New learning discoveries about 23056-47-5

According to the analysis of related databases, 23056-47-5, the application of this compound in the production field has become more and more popular.

Application of 23056-47-5, Adding some certain compound to certain chemical reactions, such as: 23056-47-5, name is 2-Bromo-4-methyl-5-nitropyridine,molecular formula is C6H5BrN2O2, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 23056-47-5.

A mixture of NH4C1 (14.9 mmol) and iron powder (18.4 mmol) in H20 (5 mE) was stirred at 90 C. 2-bromo-4- methyl-5-nitropyridine (2.3 mmol) was added in portions. The mixture was stirred at 90 C. for 1 h and 15 mm. The reaction was stopped and extracted with EtOAc. The organic layer was dried (Na2SO4) and concentrated to yield the desired product.

According to the analysis of related databases, 23056-47-5, the application of this compound in the production field has become more and more popular.

Reference:
Patent; GALAPAGOS NV; Menet, Christel Jeanne Marie; Mammoliti, Oscar; Blanc, Javier; Orsulic, Mislav; Roscic, Maja; (81 pag.)US9440929; (2016); B2;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Simple exploration of 23056-47-5

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 23056-47-5, 2-Bromo-4-methyl-5-nitropyridine, other downstream synthetic routes, hurry up and to see.

Synthetic Route of 23056-47-5 ,Some common heterocyclic compound, 23056-47-5, molecular formula is C6H5BrN2O2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Step 1 [0611] A suspension of 2-bromo-4-methyl-5-nitropyridine (XIV) (200 g, 921 mmol, 1.00 eq) and NH4C1 (240 g, 4.49 mol, 4.87 eq) in EtOH (3.50 L) and water (150 mL) was heated with stirring to 50C. To this mixture was added Fe (120 g, 2.15 mol, 2.33 eq) and HC1 (10.2 g, 279 mmol, 0.30 eq). The suspension was then heated to 80C for another 3 h. The reaction was cooled to 25C and filtered through a plug of Celite. The filtrate was concentrated under reduced pressure to yield a residue that was taken up in EtOAc (1 L x 3) and washed with brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to give 6-bromo-4-methylpyridin-3 -amine (XV) as brown solid (167.9 g, 898 mmol, 97.4% yield) which was used for the next step without any purification. l NMR (CDC , 400 MHz) delta ppm 2.15 (s, 3H), 3.44 (br s, 2H), 7.14 (s, 1H), 7.78 (s, 1H); ESIMS found for C6H7BrN2 mlz 186.8 (M+H).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 23056-47-5, 2-Bromo-4-methyl-5-nitropyridine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; SAMUMED, LLC.; KC, Sunil Kumar; WALLACE, David Mark; CAO, Jianguo; CHIRUTA, Chandramouli; HOOD, John; (254 pag.)WO2017/23980; (2017); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 23056-47-5

With the rapid development of chemical substances, we look forward to future research findings about 23056-47-5.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 23056-47-5, name is 2-Bromo-4-methyl-5-nitropyridine, molecular formula is C6H5BrN2O2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. Recommanded Product: 23056-47-5

A suspension of 2-bromo-4-methyl-5-nitropyridine (XIV) (200 g, 921 mmol, 1.00 eq) and NH4C1 (240 g, 4.49 mol, 4.87 eq) in EtOH (3.50 L) and water (150 mL) was heated with stirring to 50C. To this mixture was added Fe (120 g, 2.15 mol, 2.33 eq) and HC1 (10.2 g, 279 mmol, 0.30 eq). The suspension was then heated to 80C for another 3 h. The reaction was cooled to 25C and filtered through a plug of Celite. The filtrate was concentrated under reduced pressure to yield a residue that was taken up in EtOAc (1 Lx 3) and washed with brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to give 6- bromo-4-methylpyridin-3-amine (XV) as brown solid (167.9 g, 898 mmol, 97.4% yield) which was used for the next step without any purification. ?H NMR (CDC13, 400 MHz) ppm 2.15 (s, 3H), 3.44 (br s, 2H), 7.14 (s, 1H), 7.78 (s, 1H); ESIMS found for C6H7BrN2 mlz 186.8 (M+H).

With the rapid development of chemical substances, we look forward to future research findings about 23056-47-5.

Reference:
Patent; SAMUMED, LLC; KC, Sunil Kumar; WALLACE, David Mark; CAO, Jianguo; CHIRUTA, Chandramouli; HOOD, John; (271 pag.)WO2017/24026; (2017); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Brief introduction of 23056-47-5

According to the analysis of related databases, 23056-47-5, the application of this compound in the production field has become more and more popular.

Electric Literature of 23056-47-5, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 23056-47-5, name is 2-Bromo-4-methyl-5-nitropyridine, molecular formula is C6H5BrN2O2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Intermediate 6.1 : 2-bromo-5-nitro-pyridine-4-carboxylic acid To a solution of 2-bromo-4-methyl-5-nitropyridine (10 g, 46.5 mmol) in H2S04 (100 mL) was added Cr03 (15.5 g, 153 mmol) in portions at 0C. The reaction solution was stirred at 0C for 1 h and then warmed to ambient for 16 h. Then the solution was poured into a mixture of ice and water (300 mL), stirred at room temperature for 1 h, filtered to get a white solid, this target compound was used for the next step without any further purification.

According to the analysis of related databases, 23056-47-5, the application of this compound in the production field has become more and more popular.

Reference:
Patent; LEO PHARMA A/S; SOERENSEN, Morten Dahl; LARSEN, Jens Christian Hoejland; NOERREMARK, Bjarne; LIANG, Xifu; HUANG, Guoxiang; CHEN, Jinzhong; WO2013/82756; (2013); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 2-Bromo-4-methyl-5-nitropyridine

According to the analysis of related databases, 23056-47-5, the application of this compound in the production field has become more and more popular.

Reference of 23056-47-5, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 23056-47-5, name is 2-Bromo-4-methyl-5-nitropyridine. This compound has unique chemical properties. The synthetic route is as follows.

A suspension of 2-bromo-4-methyl-5-nitropyridine (XIV) (200 g, 921 mmol, 1.00 eq) and NH4C1 (240 g, 4.49 mol, 4.87 eq) in EtOH (3.50 L) and water (150 mL) was heated with stirring to 50C. To this mixture was added Fe (120 g, 2.15 mol, 2.33 eq) and HC1 (10.2 g, 279 mmol, 0.30 eq). The suspension was then heated to 80C for another 3 h. The reaction was cooled to 25C and filtered through a plug of Celite. The filtrate was concentrated under reduced pressure to yield a residue that was taken up in EtOAc (1 Lx 3) and washed with brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to give 6- bromo-4-methylpyridin-3-amine (XV) as brown solid (167.9 g, 898 mmol, 97.4% yield) which was used for the next step without any purification. ?H NMR (CDC13, 400 MHz) ppm 2.15 (s, 3H), 3.44 (br s, 2H), 7.14 (s, 1H), 7.78 (s, 1H); ESIMS found for C6H7BrN2 mlz 186.8 (M+H).

According to the analysis of related databases, 23056-47-5, the application of this compound in the production field has become more and more popular.

Reference:
Patent; SAMUMED, LLC.; KC, Sunil Kumar; WALLACE, David Mark; CAO, Jianguo; CHIRUTA, Chandramouli; HOOD, John; (240 pag.)WO2017/23975; (2017); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem