In 2016,Sahu, Sumit; Zhang, Bo; Pollock, Christopher J.; Durr, Maximilian; Davies, Casey G.; Confer, Alex M.; Ivanovic-Burmazovic, Ivana; Siegler, Maxime A.; Jameson, Guy N. L.; Krebs, Carsten; Goldberg, David P. published 《Aromatic C-F Hydroxylation by Nonheme Iron(IV)-Oxo Complexes: Structural, Spectroscopic, and Mechanistic Investigations》.Journal of the American Chemical Society published the findings.Quality Control of 2-(Bromomethyl)pyridine hydrobromide The information in the text is summarized as follows:
The synthesis and reactivity of a series of mononuclear nonheme iron complexes that carry out intramol. aromatic C-F hydroxylation reactions is reported. The key intermediate prior to C-F hydroxylation, [FeIV(O)(N4Py2Ar1)](BF4)2 (1-O, Ar1 = -2,6-difluorophenyl), was characterized by single-crystal X-ray diffraction. The crystal structure revealed a nonbonding C-H···O=Fe interaction with a CH3CN mol. Variable-field Mössbauer spectroscopy of 1-O indicates an intermediate-spin (S = 1) ground state. The Mössbauer parameters for 1-O include an unusually small quadrupole splitting for a triplet FeIV(O) and are reproduced well by d. functional theory calculations With the aim of investigating the initial step for C-F hydroxylation, two new ligands were synthesized, N4Py2Ar2 (L2, Ar2 = -2,6-difluoro-4-methoxyphenyl) and N4Py2Ar3 (L3, Ar3 = -2,6-difluoro-3-methoxyphenyl), with -OMe substituents in the meta or ortho/para positions with respect to the C-F bonds. FeII complexes [Fe(N4Py2Ar2)(CH3CN)](ClO4)2 (2) and [Fe(N4Py2Ar3)(CH3CN)](ClO4)2 (3) reacted with iso-Pr 2-iodoxybenzoate to give the C-F hydroxylated FeIII-OAr products. The FeIV(O) intermediates 2-O and 3-O were trapped at low temperature and characterized. Complex 2-O displayed a C-F hydroxylation rate similar to that of 1-O. In contrast, the kinetics (via stopped-flow UV-vis) for complex 3-O displayed a significant rate enhancement for C-F hydroxylation. Eyring anal. revealed the activation barriers for the C-F hydroxylation reaction for the three complexes, consistent with the observed difference in reactivity. A terminal FeII(OH) complex (4) was prepared independently to investigate the possibility of a nucleophilic aromatic substitution pathway, but the stability of 4 rules out this mechanism. Taken together the data fully support an electrophilic C-F hydroxylation mechanism. The results came from multiple reactions, including the reaction of 2-(Bromomethyl)pyridine hydrobromide(cas: 31106-82-8Quality Control of 2-(Bromomethyl)pyridine hydrobromide)
2-(Bromomethyl)pyridine hydrobromide(cas: 31106-82-8) belongs to pyridine. In industry and in the lab, pyridine is used as a reaction solvent, particularly when its basicity is useful, and as a starting material for synthesizing some herbicides, fungicides, and antiseptics.Quality Control of 2-(Bromomethyl)pyridine hydrobromide