Nevskaya, Alisa A. et al. published their research in Tetrahedron Letters in 2021 | CAS: 91-02-1

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine is diamagnetic and has a diamagnetic susceptibility of 閳?8.7 鑴?10閳? cm3璺痬ol閳?.The molecular electric dipole moment is 2.2 debyes. The standard enthalpy of formation is 100.2 kJ璺痬ol閳? in the liquid phase and 140.4 kJ璺痬ol閳? in the gas phase. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Reference of 91-02-1

Synthesis and cytotoxicity of novel 1-arylindolizines and 1-arylpyrrolo[2,1-a]isoquinolines was written by Nevskaya, Alisa A.;Miftyakhova, Almira R.;Anikina, Lada V.;Borisova, Tatiana N.;Varlamov, Aleksey V.;Voskressensky, Leonid G.. And the article was included in Tetrahedron Letters in 2021.Reference of 91-02-1 This article mentions the following:

An efficient approach to the synthesis of indolizines and pyrrolo[2,1-a]isoquinolines based on a domino reaction was described. The reactivity of the derivatives and the structure-activity anal. are carried out in a number of the obtained compounds A hit was found showing high cytotoxicity on tumor cells whose cytotoxic effect was comparable to that of the known topoisomerase I inhibitor camptothecin. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Reference of 91-02-1).

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine is diamagnetic and has a diamagnetic susceptibility of 閳?8.7 鑴?10閳? cm3璺痬ol閳?.The molecular electric dipole moment is 2.2 debyes. The standard enthalpy of formation is 100.2 kJ璺痬ol閳? in the liquid phase and 140.4 kJ璺痬ol閳? in the gas phase. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Reference of 91-02-1

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Nakano, Yuji et al. published their research in Angewandte Chemie, International Edition in 2020 | CAS: 91-02-1

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Pyridine derivatives are also useful as small-molecule 浼?helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.Quality Control of Phenyl(pyridin-2-yl)methanone

Photoenzymatic Hydrogenation of Heteroaromatic Olefins Using 閳ョ潷ne閳?Reductases with Photoredox Catalysts was written by Nakano, Yuji;Black, Michael J.;Meichan, Andrew J.;Sandoval, Braddock A.;Chung, Megan M.;Biegasiewicz, Kyle F.;Zhu, Tianyu;Hyster, Todd K.. And the article was included in Angewandte Chemie, International Edition in 2020.Quality Control of Phenyl(pyridin-2-yl)methanone This article mentions the following:

Flavin-dependent 閳ョ灃ne閳?reductases (EREDs) are highly selective catalysts for the asym. reduction of activated alkenes. This function is, however, limited to enones, enoates, and nitroalkenes using the native hydride transfer mechanism. Here we demonstrate that EREDs can reduce vinyl pyridines when irradiated with visible light in the presence of a photoredox catalyst. Exptl. evidence suggests the reaction proceeds via a radical mechanism where the vinyl pyridine is reduced to the corresponding neutral benzylic radical in solution DFT calculations reveal this radical to be “dynamically stable”, suggesting it is sufficiently long-lived to diffuse into the enzyme active site for stereoselective hydrogen atom transfer. This reduction mechanism is distinct from the native one, highlighting the opportunity to expand the synthetic capabilities of existing enzyme platforms by exploiting new mechanistic models. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Quality Control of Phenyl(pyridin-2-yl)methanone).

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Pyridine derivatives are also useful as small-molecule 浼?helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.Quality Control of Phenyl(pyridin-2-yl)methanone

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Czyz, Milena L. et al. published their research in ACS Catalysis in 2021 | CAS: 91-02-1

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. One of the examples of pyridines is the well-known alkaloid lithoprimidine, which is an A3 adenosine receptor antagonist and N,N-dimethylaminopyridine (DMAP) analog, commonly used in organic synthesis.Application In Synthesis of Phenyl(pyridin-2-yl)methanone

Reductive Activation and Hydrofunctionalization of Olefins by Multiphoton Tandem Photoredox Catalysis was written by Czyz, Milena L.;Taylor, Mitchell S.;Horngren, Tyra H.;Polyzos, Anastasios. And the article was included in ACS Catalysis in 2021.Application In Synthesis of Phenyl(pyridin-2-yl)methanone This article mentions the following:

The conversion of olefin feedstocks to architecturally complex alkanes represents an important strategy in the expedient generation of valuable mols. for the chem. and life sciences. Synthetic approaches are reliant on the electrophilic activation of unactivated olefins, necessitating functionalization with nucleophiles. However, the reductive functionalization of unactivated and less activated olefins with electrophiles remains an ongoing challenge in synthetic chem. Here, we report the nucleophilic activation of inert styrenes through a photoinduced direct single electron reduction to the corresponding nucleophilic radical anion. Central to this approach is the multiphoton tandem photoredox cycle of the iridium photocatalyst [Ir(ppy)2(dtb-bpy)]PF6, which triggers in situ formation of a high-energy photoreductant that selectively reduces styrene olefinic 锜?bonds to radical anions without stoichiometric reductants or dissolving metals. This mild strategy enables the chemoselective reduction and hydrofunctionalization of styrenes to furnish valuable alkane and tertiary alc. derivatives Mechanistic studies support the formation of a styrene olefinic radical anion intermediate and a Birch-type reduction involving two sequential single electron transfers. Overall, this complementary mode of olefin activation achieves the hydrofunctionalization of less activated alkenes with electrophiles, adding value to abundant olefins as valuable building blocks in modern synthetic protocols. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Application In Synthesis of Phenyl(pyridin-2-yl)methanone).

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. One of the examples of pyridines is the well-known alkaloid lithoprimidine, which is an A3 adenosine receptor antagonist and N,N-dimethylaminopyridine (DMAP) analog, commonly used in organic synthesis.Application In Synthesis of Phenyl(pyridin-2-yl)methanone

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Ai, Jing-Jing et al. published their research in Organic Letters in 2021 | CAS: 91-02-1

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ璺痬ol閳? in pyridine vs. 150 kJ璺痬ol閳? in benzene). Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Reference of 91-02-1

Fe-S Catalyst Generated In Situ from Fe(III)- and S3璺?-Promoted Aerobic Oxidation of Terminal Alkenes was written by Ai, Jing-Jing;Liu, Bei-Bei;Li, Jian;Wang, Fei;Huang, Cheng-Mi;Rao, Weidong;Wang, Shun-Yi. And the article was included in Organic Letters in 2021.Reference of 91-02-1 This article mentions the following:

An iron-sulfur complex formed by the simple mixture of FeCl3 with S3璺? generated in situ from K2S is developed and applied to selective aerobic oxidation of terminal alkenes. The reaction was carried out under an atm. of O2 (balloon) and could proceed on a gram scale, expanding the application of S3璺? in organic synthesis. This study also encourages to explore the application of an Fe-S catalyst in organic reactions. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Reference of 91-02-1).

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ璺痬ol閳? in pyridine vs. 150 kJ璺痬ol閳? in benzene). Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Reference of 91-02-1

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Li, Yu-Lan et al. published their research in Anti-Cancer Agents in Medicinal Chemistry in 2020 | CAS: 91-02-1

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ璺痬ol閳? in pyridine vs. 150 kJ璺痬ol閳? in benzene). Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Formula: C12H9NO

Anticancer Activity of Platinum (II) Complex with 2-Benzoylpyridine by Induction of DNA Damage, S-Phase Arrest, and Apoptosis was written by Li, Yu-Lan;Gan, Xin-Li;Zhu, Rong-Ping;Wang, Xuehong;Liao, Duan-Fang;Jin, Junfei;Huang, Zhaoquan. And the article was included in Anti-Cancer Agents in Medicinal Chemistry in 2020.Formula: C12H9NO This article mentions the following:

To overcome the disadvantages of cisplatin, numerous platinum (Pt) complexes have been prepared However, the anticancer activity and mechanism of Pt(II) complexed with 2-benzoylpyridine [Pt(II)- Bpy]: [PtCl2(DMSO)L] (DMSO = DMSO, L = 2-benzoylpyridine) in cancer cells remain unknown. Pt(II)-Bpy inhibited tumor cell growth, especially HepG2 human liver cancer cells, with a halfmaximal inhibitory concentration of 9.8鍗?.5娓璏, but with low toxicity in HL-7702 normal liver cells. Pt(II)- Bpy induced DNA damage, which was demonstrated through a marked increase in the expression of cleavedpoly (ADP ribose) polymerase (PARP) and gamma-H2A histone family member X and a decrease in PARP expression. The interaction of Pt(II)-Bpy with DNA at the mol. level was most likely through an intercalation mechanism, which might be evidence of DNA damage. It also caused severe loss of the mitochondrial membrane potential; a decrease in the expression of caspase-9 and caspase-3; an increase in reactive oxygen species levels; the release of cytochrome c and apoptotic protease activation factor; and the activation of caspase-9 and caspase-3 in HepG2 cells, which in turn resulted in apoptosis. Meanwhile, changes in p53 and related proteins were observed including the upregulation of p53, the phosphorylation of p53, p21, B-cell lymphoma-2-associated X protein, and NOXA; and the downregulation of B-cell lymphoma 2. Pt(II)-Bpy is a potential candidate for cancer chemotherapy. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Formula: C12H9NO).

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ璺痬ol閳? in pyridine vs. 150 kJ璺痬ol閳? in benzene). Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Formula: C12H9NO

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Reisenbauer, Julia C. et al. published their research in Organic Process Research & Development in 2022 | CAS: 91-02-1

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine has a conjugated system of six 锜?electrons that are delocalized over the ring. The molecule is planar and, thus, follows the H鐪塩kel criteria for aromatic systems. Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C閳ユ弻 in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Product Details of 91-02-1

Development of an Operationally Simple, Scalable, and HCN-Free Transfer Hydrocyanation Protocol Using an Air-Stable Nickel Precatalyst was written by Reisenbauer, Julia C.;Bhawal, Benjamin N.;Jelmini, Nicola;Morandi, Bill. And the article was included in Organic Process Research & Development in 2022.Product Details of 91-02-1 This article mentions the following:

Herein, HCN-free transfer hydrocyanation of alkenes and alkynes that employed com. available aliphatic nitriles R1CC(CN)R1 [R1 = Ph, 2-MeC6H4, 4-PhC6H4, etc.; R2 = H; R1R2 = (CH2)6] and alkenyl nitriles R1C=C(CN)R1 [R1 = nPr, nBu, SiMe3 R2 = nPr, nBu, Ph] as sacrificial HCN donors in combination with a catalytic amount of air-stable and inexpensive NiCl2 as a precatalyst and a cocatalytic Lewis acid was reported. The scalability and robustness of the catalytic process were demonstrated by the hydrocyanation of 浼?methylstyrene on a 100 mmol scale (11.4 g of product obtained) using 1 mol % of the Ni catalyst. In addition, the feasibility of the dehydrocyanation protocol using the air-stable Ni(II) precatalyst and norbornadiene as a sacrificial acceptor was showcased by the selective conversion of an aliphatic nitrile into the corresponding alkene. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Product Details of 91-02-1).

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine has a conjugated system of six 锜?electrons that are delocalized over the ring. The molecule is planar and, thus, follows the H鐪塩kel criteria for aromatic systems. Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C閳ユ弻 in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Product Details of 91-02-1

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Chatterjee, Arnab et al. published their research in Inorganica Chimica Acta in 2020 | CAS: 91-02-1

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine is diamagnetic and has a diamagnetic susceptibility of 閳?8.7 鑴?10閳? cm3璺痬ol閳?.The molecular electric dipole moment is 2.2 debyes. The standard enthalpy of formation is 100.2 kJ璺痬ol閳? in the liquid phase and 140.4 kJ璺痬ol閳? in the gas phase. Pyridine, its benzo and pyridine-based compounds play diverse roles in organic chemistry. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. COA of Formula: C12H9NO

pH dependent catecholase activity of Fe(II) complexes of type [Fe(L)]X2 [L = N-(phenyl-pyridin-2-yl-methylene)-ethane-1,2-diamine; X = ClO4 (1), PF6 (2)]: Role of counter anion on turnover number was written by Chatterjee, Arnab;Kaur, Gurpreet;Joshi, Mayank;Choudhury, Angshuman Roy;Ghosh, Rajarshi. And the article was included in Inorganica Chimica Acta in 2020.COA of Formula: C12H9NO This article mentions the following:

Two mononuclear Fe(II) complexes having same ligand framework, coordination geometry but different counter anions [Fe(L)]X2 [L = N-(phenyl-pyridin-2-yl-methylene)-ethane-1,2-diamine; X = ClO4 (1), PF6 (2)] have been synthesized and crystallog. characterized. Both the complexes catalyzed catechol-quinone oxidation pH dependently. In the pH range 8.3-8.5 the suitable activity of both the complexes were found. Counter anions in the complexes played a significant role in controlling the turn over numbers of the catalytic reactions. In acetonitrile (MeCN), the turn over number for 1 was 4.99 h-1 and for 2, it was 42.75 h-1. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1COA of Formula: C12H9NO).

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine is diamagnetic and has a diamagnetic susceptibility of 閳?8.7 鑴?10閳? cm3璺痬ol閳?.The molecular electric dipole moment is 2.2 debyes. The standard enthalpy of formation is 100.2 kJ璺痬ol閳? in the liquid phase and 140.4 kJ璺痬ol閳? in the gas phase. Pyridine, its benzo and pyridine-based compounds play diverse roles in organic chemistry. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. COA of Formula: C12H9NO

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Gou, Yi et al. published their research in Journal of Medicinal Chemistry in 2022 | CAS: 91-02-1

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine has a conjugated system of six 锜?electrons that are delocalized over the ring. The molecule is planar and, thus, follows the H鐪塩kel criteria for aromatic systems. Pyridine, its benzo and pyridine-based compounds play diverse roles in organic chemistry. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. Quality Control of Phenyl(pyridin-2-yl)methanone

Dithiocarbazate-FeIII, -CoIII, -NiII, and -ZnII Complexes: Design, Synthesis, Structure, and Anticancer Evaluation was written by Gou, Yi;Jia, Xiaoying;Hou, Li Xia;Deng, Jun Gang;Huang, Guo Jin;Jiang, Hao Wen;Yang, Feng. And the article was included in Journal of Medicinal Chemistry in 2022.Quality Control of Phenyl(pyridin-2-yl)methanone This article mentions the following:

Non-platinum-metal complexes show great potential as anticancer agents. Herein, a series of dithiocarbazate non-Pt-metal complexes, including [FeIII(L)2]璺疌l璺?H2O 1, [CoIII(L)2]璺疦O3璺?.5H2O 2, [NiII(L)2] 3, and [ZnII(L)2] 4, have been designed and evaluated for their efficacy as antineoplastic agents. Among them, complex 2 exhibited higher anticancer efficacy than complexes 1, 3, 4, and cisplatin against several cancer cell lines. Hemolysis assays revealed that complex 2 showed comparable hemolysis with cisplatin. In vivo anticancer evaluations showed that complex 2 could retard tumor xenograft growth effectively with low systemic toxicity. Further studies revealed that complex 2 suppressed cancer cells by triggering multiple mechanisms involving the simultaneous inhibition of mitochondria and glycolytic bioenergetics. Overall, our study provides new insights into the anticancer mechanism of Co complexes, which can be used as a good strategy to overcome the flexibility of cancer cells to chemotherapy adaptation. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Quality Control of Phenyl(pyridin-2-yl)methanone).

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine has a conjugated system of six 锜?electrons that are delocalized over the ring. The molecule is planar and, thus, follows the H鐪塩kel criteria for aromatic systems. Pyridine, its benzo and pyridine-based compounds play diverse roles in organic chemistry. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. Quality Control of Phenyl(pyridin-2-yl)methanone

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Xu, Pengcheng et al. published their research in Organic & Biomolecular Chemistry in 2021 | CAS: 91-02-1

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Pyridine, its benzo and pyridine-based compounds play diverse roles in organic chemistry. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. Product Details of 91-02-1

Palladium-catalyzed dearomative cyclocarbonylation of allyl alcohol for the synthesis of quinolizinones was written by Xu, Pengcheng;Qian, Bo;Qi, Zaojuan;Gao, Bao;Hu, Bin;Huang, Hanmin. And the article was included in Organic & Biomolecular Chemistry in 2021.Product Details of 91-02-1 This article mentions the following:

An approach for the synthesis of quinolizinone I (R = H, 6-Me, 7-F, etc.; R1 = H, Me, Ph; R2 = H, Me, pentyl; R3 = H, Me; X = N, CH) with potential bioactivity has been developed via palladium-catalytic dearomative cyclocarbonylation of allyl alc. R4C(R1)=C(R2)CH(R3)OH (R4 = pyridin-2-yl, 5-fluoropyridin-2-yl, pyrazin-2-yl, etc.). Diverse quinolizinone compounds I could be attained with good efficiencies. A feasible reaction pathway could be a successive procedure of allylation, dearomatization, CO insertion and the Heck reaction. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Product Details of 91-02-1).

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Pyridine, its benzo and pyridine-based compounds play diverse roles in organic chemistry. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. Product Details of 91-02-1

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Zhang, Jin et al. published their research in Organic Letters in 2022 | CAS: 91-02-1

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Related Products of 91-02-1

Selective Oxidation of Alkylarenes to the Aromatic Ketones or Benzaldehydes with Water was written by Zhang, Jin;Du, Jihong;Zhang, Chenyang;Liu, Kun;Yu, Feifei;Yuan, Yongkun;Duan, Baogen;Liu, Renhua. And the article was included in Organic Letters in 2022.Related Products of 91-02-1 This article mentions the following:

Here a palladium-catalyzed oxidation method for converting alkylarenes into the aromatic ketones or benzaldehydes ArC(O)R1 [Ar = Ph, 4-MeC6H4, 4-HOC6H4, etc.; R1 = H, Ph, 4-ClC6H4, etc.] with water as the only oxygen donor was reported. This C-H bond oxidation functionalization did not require other oxidants and hydrogen acceptors, and H2 was the only byproduct. The oxygen atom introduced into the products was confirmed to be from water by the MS anal. on the product of the 18O-labeled water reaction. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Related Products of 91-02-1).

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Related Products of 91-02-1

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem