Zhou, Xibing’s team published research in Organic Letters in 2019 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. SDS of cas: 3510-66-5

SDS of cas: 3510-66-5In 2019 ,《Palladium-Catalyzed Hydrocarbonylative Cyclization Enabled by Formal Insertion of Aromatic C=N Bonds into Pd-Acyl Bondsã€?appeared in Organic Letters. The author of the article were Zhou, Xibing; Chen, Anrong; Du, Wei; Wang, Yawen; Peng, Yu; Huang, Hanmin. The article conveys some information:

An efficient new formal insertion strategy via combination of reductive elimination and oxidative addition sequence was reported, in which the transient N-acyliminium ions formed via hydrocarbonylation function as key intermediates. This strategy has enabled a novel palladium-catalyzed hydrocarbonylative cyclization of azaarene-tethered alkenes or dienes via sequential insertion of a C=C bond, CO, and a C=N bond into palladium-hydride bonds. This method provides a new and highly efficient synthetic approach to quinolizinones and its derivatives with extended π-conjugated systems, possessing tunable emission wavelengths and good photoluminescence capabilities.2-Bromo-5-methylpyridine(cas: 3510-66-5SDS of cas: 3510-66-5) was used in this study.

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. SDS of cas: 3510-66-5

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sarkar, Nandini’s team published research in CrystEngComm in 2019 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. The basicity and metallophilic high donor number of these π-deficient systems has long favored them as ligands in metal catalysis. The last decade saw pyridine assume a stronger role as functional group for directed C–H oxidation/activation.Reference of 2-Bromo-5-methylpyridine

Reference of 2-Bromo-5-methylpyridineIn 2019 ,《Systematic investigation of hydrogen-bond propensities for informing co-crystal design and assemblyã€?appeared in CrystEngComm. The author of the article were Sarkar, Nandini; Sinha, Abhijeet S.; Aakeroy, Christer B.. The article conveys some information:

Co-crystallizations can be utilized for generating new solid forms of a target substance in order to alter or enhance some specific bulk phys. property. Generally, selection of the co-former (the necessary partner for the target mol.) is based on existing structural information about mol. recognition events involving complementary functional groups, and extensive exptl. screening methods. In this study, we utilize structure-informatics in an attempt to predict if two different mols. will form a co-crystal or not. Our study is based on hydrogen-bond propensity (HBP), and the key premise of our approach rests on whether target-co-former interactions are more likely to take place than either target-target or co-former-co-former hydrogen bonds. We examined six different target mols. in combination with 25 possible co-formers each and used the HBP protocol for predicting if a co-crystal would form or not. The predictions were then compared with results from an exptl. co-crystal screen of the 150 different combinations. The correct outcome was successfully predicted 92-95% of the time which shows that for this series of small mols., HBP is a very reliable indicator for determining if a co-crystal will form between a target mol. and a particular co-former. In the part of experimental materials, we found many familiar compounds, such as 2-Bromo-5-methylpyridine(cas: 3510-66-5Reference of 2-Bromo-5-methylpyridine)

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. The basicity and metallophilic high donor number of these π-deficient systems has long favored them as ligands in metal catalysis. The last decade saw pyridine assume a stronger role as functional group for directed C–H oxidation/activation.Reference of 2-Bromo-5-methylpyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Zhong, Shuai’s team published research in Organic Letters in 2022 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. In industry and in the lab, pyridine is used as a reaction solvent, particularly when its basicity is useful, and as a starting material for synthesizing some herbicides, fungicides, and antiseptics.Application of 3510-66-5

In 2022,Zhong, Shuai; Zhou, Zhiwei; Zhao, Feng; Mao, Guojiang; Deng, Guo-Jun; Huang, Huawen published an article in Organic Letters. The title of the article was 《Deoxygenative C-S Bond Coupling with Sulfinates via Nickel/Photoredox Dual Catalysisã€?Application of 3510-66-5 The author mentioned the following in the article:

The C-S bond formation from aryl halides and thiols has been well established under various catalytic systems. In this work, user-friendly sulfinates have been exploited as an efficient sulfenylating reagent in the C-S couplings through visible light-induced photo/nickel dual catalysis under base- and external reductant-free conditions. A large number of aryl sulfide products were accessed with high selectivity and high tolerance of various functionalities. After reading the article, we found that the author used 2-Bromo-5-methylpyridine(cas: 3510-66-5Application of 3510-66-5)

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. In industry and in the lab, pyridine is used as a reaction solvent, particularly when its basicity is useful, and as a starting material for synthesizing some herbicides, fungicides, and antiseptics.Application of 3510-66-5

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Xie, Haisheng’s team published research in Organic Letters in 2019 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridines are often used as catalysts or reagents; particular notice has been paid recently to how pyridine coordinates to metal centers enabling a wide range of valuable reactions. SDS of cas: 3510-66-5

In 2019,Organic Letters included an article by Xie, Haisheng; Shao, Youxiang; Gui, Jiao; Lan, Jianyong; Liu, Zhipeng; Ke, Zhuofeng; Deng, Yuanfu; Jiang, Huanfeng; Zeng, Wei. SDS of cas: 3510-66-5. The article was titled 《Co(II)-Catalyzed Regioselective Pyridine C-H Coupling with Diazoacetatesã€? The information in the text is summarized as follows:

A Co(II)-catalyzed pyridyl C-H bond carbenoid insertion with α-diazoacetates has been realized. This transformation features a highly regioselective C-C bond formation at the C3-position of pyridines, providing an efficient access to diverse α-aryl-α-pyridylacetates. After reading the article, we found that the author used 2-Bromo-5-methylpyridine(cas: 3510-66-5SDS of cas: 3510-66-5)

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridines are often used as catalysts or reagents; particular notice has been paid recently to how pyridine coordinates to metal centers enabling a wide range of valuable reactions. SDS of cas: 3510-66-5

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Dey, Nilanjan’s team published research in ChemistrySelect in 2020 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.Formula: C6H6BrN

《Addressing Multiple Ions Using Single Optical Probe: Multi-Color Response via Mutually Independent Sensing Pathwaysã€?was written by Dey, Nilanjan; Bhattacharjee, Subham; Bhattacharya, Santanu. Formula: C6H6BrN And the article was included in ChemistrySelect in 2020. The article conveys some information:

Multiresponsive smart optical probe based on p-phenylene vinylene backbone is designed for simultaneous sensing of multiple ions, such as Cu2+, Zn2+ and F- at pH 7.4. A rapid color change from colorless to deep yellow is observed upon addition of both Cu2+ and Zn2+ ion. However, under long UV lamp, the green-colored emission of the probe is specifically quenched in the presence of Cu2+, while Zn2+ induces change in the emission color from green to yellow. On the contrary, F-, unlike Cu2+ and Zn2+, does not render any change in visible color, however, an emission quenching, similar to that of Cu2+ addition, was noticed. The binding of metal ions to the central bipyridine core diminishes the ′conformational flexibilityâ€?and facilitates ′ligand to metal ionâ€?charge transfer. On the contrary, addition of fluoride triggers the cleavage of silyl ether groups and results in the photo-induced electron transfer from free hydroxyl groups to the core aromatic unit. Thus, we can detect as well as discriminate these three ions (Cu2+, Zn2+ and F-) simultaneously by comparing the resp. output signals. Further, a sustainable strategy has been developed for on-site detection of toxic ions using reusable, low-cost paper strips.2-Bromo-5-methylpyridine(cas: 3510-66-5Formula: C6H6BrN) was used in this study.

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.Formula: C6H6BrN

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Yoshida, Hiroto’s team published research in ACS Catalysis in 2020 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.Quality Control of 2-Bromo-5-methylpyridine

《Direct Suzuki-Miyaura Coupling with Naphthalene-1,8-diaminato (dan)-Substituted Organoboronsã€?was written by Yoshida, Hiroto; Seki, Michinari; Kamio, Shintaro; Tanaka, Hideya; Izumi, Yuki; Li, Jialun; Osaka, Itaru; Abe, Manabu; Andoh, Hiroki; Yajima, Tomoki; Tani, Tomohiro; Tsuchimoto, Teruhisa. Quality Control of 2-Bromo-5-methylpyridine And the article was included in ACS Catalysis in 2020. The article conveys some information:

The direct Suzuki-Miyaura coupling with “”protected”” R-B(dan) (dan = naphthalene-1,8-diaminato) (R = Ph, 4-MeOC6H4, 2-pyridyl) was demonstrated to smoothly occur without in situ deprotection of the B(dan) moiety. The use of KOt-Bu (Ba(OH)2 in some cases) as a base under anhydrous conditions is the key to the successful cross-coupling, where R-B(dan) is readily converted into a transmetalation-active borate-form, regardless of the well-accepted diminished boron-Lewis acidity. In addition to this study using 2-Bromo-5-methylpyridine, there are many other studies that have used 2-Bromo-5-methylpyridine(cas: 3510-66-5Quality Control of 2-Bromo-5-methylpyridine) was used in this study.

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.Quality Control of 2-Bromo-5-methylpyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Yang, Qi-Liang’s team published research in Organometallics in 2019 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Related Products of 3510-66-5

The author of 《Palladium-Catalyzed Electrochemical C-H Alkylation of Arenesã€?were Yang, Qi-Liang; Li, Chuan-Zeng; Zhang, Liang-Wei; Li, Yu-Yan; Tong, Xiaofeng; Wu, Xin-Yan; Mei, Tian-Sheng. And the article was published in Organometallics in 2019. Related Products of 3510-66-5 The author mentioned the following in the article:

2-Arylpyridines were electrochem. ortho-alkylated by RBF3K, the reaction being performed in undivided cell in aqueous solutions catalyzed by Pd(OAc)2. Palladium-catalyzed electrochem. C-H functionalization reactions have emerged as attractive tools for organic synthesis. This process offers an alternative to conventional methods that require harsh chem. oxidants. However, this electrolysis requires divided cells to avoid catalyst deactivation by cathodic reduction Herein, we report the first example of palladium-catalyzed electrochem. C-H alkylation of arenes using undivided electrochem. cells in water, thereby providing a practical solution for the introduction of alkyl group into arenes. The experimental process involved the reaction of 2-Bromo-5-methylpyridine(cas: 3510-66-5Related Products of 3510-66-5)

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Related Products of 3510-66-5

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Yang, Qi-Liang’s team published research in Organometallics in 2019 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Related Products of 3510-66-5

The author of 《Palladium-Catalyzed Electrochemical C-H Alkylation of Arenes》 were Yang, Qi-Liang; Li, Chuan-Zeng; Zhang, Liang-Wei; Li, Yu-Yan; Tong, Xiaofeng; Wu, Xin-Yan; Mei, Tian-Sheng. And the article was published in Organometallics in 2019. Related Products of 3510-66-5 The author mentioned the following in the article:

2-Arylpyridines were electrochem. ortho-alkylated by RBF3K, the reaction being performed in undivided cell in aqueous solutions catalyzed by Pd(OAc)2. Palladium-catalyzed electrochem. C-H functionalization reactions have emerged as attractive tools for organic synthesis. This process offers an alternative to conventional methods that require harsh chem. oxidants. However, this electrolysis requires divided cells to avoid catalyst deactivation by cathodic reduction Herein, we report the first example of palladium-catalyzed electrochem. C-H alkylation of arenes using undivided electrochem. cells in water, thereby providing a practical solution for the introduction of alkyl group into arenes. The experimental process involved the reaction of 2-Bromo-5-methylpyridine(cas: 3510-66-5Related Products of 3510-66-5)

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Related Products of 3510-66-5

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Panish, Robert’s team published research in Organic Letters in 2021 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridines are often used as catalysts or reagents; particular notice has been paid recently to how pyridine coordinates to metal centers enabling a wide range of valuable reactions. Category: pyridine-derivatives

Panish, Robert; Thieu, Tho; Balsells, Jaume published their research in Organic Letters in 2021. The article was titled 《Copper-Catalyzed Synthesis of 5-Carboxyl-4-perfluoroalkyl Triazoles》.Category: pyridine-derivatives The article contains the following contents:

A facile, scalable synthesis of previously inaccessible trifluoromethyl and perfluoroalkyl triazoles is disclosed. Mediated by copper, this catalytic protocol enables access to 4-perfluoroalkyl triazoles from commodity chems. A catalytic Cu(II) system wherein copper serves two roles (generation of N-tosyl-2-vinyldiazenes and N-N bond formation) allows for rapid assembly of 5-carboxyl-4-perfluoroalkyl-triazoles from N-tosylhydrazide and perfluoroalkyl acetoacetates. Et 4,4,4-trifluoro-3-(2-tosylhydrazineylidene)butanoate, a previously unknown air and bench stable reagent for access to CF3-triazoles, was developed to enable this chem. This led to the identification of a series of crystalline hydrazone reagents that could be used as templates to construct an array of triazoles. Hydrolysis and decarboxylation parlay this approach into a means to access 5-H-4-CF3-triazoles. The approach exhibits high functional group tolerance and can be executed on a multigram scale. In addition to this study using 2-Bromo-5-methylpyridine, there are many other studies that have used 2-Bromo-5-methylpyridine(cas: 3510-66-5Category: pyridine-derivatives) was used in this study.

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridines are often used as catalysts or reagents; particular notice has been paid recently to how pyridine coordinates to metal centers enabling a wide range of valuable reactions. Category: pyridine-derivatives

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Griffin, Jeremy D.’s team published research in ACS Catalysis in 2021 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Product Details of 3510-66-5

Griffin, Jeremy D.; Vogt, David B.; Du Bois, J.; Sigman, Matthew S. published an article in 2021. The article was titled 《Mechanistic Guidance Leads to Enhanced Site-Selectivity in C-H Oxidation Reactions Catalyzed by Ruthenium bis(Bipyridine) Complexes》, and you may find the article in ACS Catalysis.Product Details of 3510-66-5 The information in the text is summarized as follows:

The development of an operationally simple C-H oxidation protocol using an acid-stable, bis(bipyridine)Ru catalyst is described. Electronic differences remote to the site of C-H functionalization are found to affect product selectivity. Site-selectivity is further influenced by the choice of reaction solvent, with highest levels of 2° methylene oxidation favored in aqueous dichloroacetic acid. A statistical model is detailed that correlates product selectivity outcomes with computational parameters describing the relative “”electron-richness”” of C-H bonds. The results came from multiple reactions, including the reaction of 2-Bromo-5-methylpyridine(cas: 3510-66-5Product Details of 3510-66-5)

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Product Details of 3510-66-5

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem