Related Products of 38496-18-3, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 38496-18-3, name is 2,6-Dichloronicotinic acid, molecular formula is C6H3Cl2NO2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.
Tris(2-(2-methoxyethoxy)ethyl)amine (3.0mL, 9.4mmol) was added to a mixture of 2,6-dichloronicotinic acid (40g (90percentpurity), 0.19 mol), acetamide (80g, 1.4mol), potassium carbonate (78g, 0.56mol), copper(I) chloride (0.93g, 9.4mmol) and xylene (80mL), which was stirred overnight at 145°C. After cooling, copper(I) chloride (0.46g, 4.6mmol) was added to the reaction solution, which was stirred overnight at 145°C. After cooling the reaction solution to 105°C, water (100mL) was added, the solution was stirred for 1 hour at the same temperature, and cooled down to room temperature. 5N hydrochloric acid (150mL) was added, the solution was neutralized with a citric acid aqueous solution, then, ethyl acetate was added, and the solution was filtered through Celite pad. The organic layer was washed with brine, then, the solvent was evaporated in vacuo. The residue was purified by silica gel column chromatography (ethyl acetate), recrystallization by the ethyl acetate-hexane was carried out to obtain the title compound (1.4g, 8.3mmol, 4.5percent) as white crystal. 1H-NMR Spectrum (DMSO-d6) delta(ppm) : 6.61 (1H, d, J=8.1 Hz), 7.53 (2H, brs), 8.01 (1H, d, J=8.1 Hz).
While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 38496-18-3, 2,6-Dichloronicotinic acid.
Reference:
Patent; Eisai Co., Ltd.; EP1669348; (2006); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem