Sharma, Swagat et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2019 | CAS: 3939-15-9

6-Fluoropicolinonitrile (cas: 3939-15-9) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Electric Literature of C6H3FN2

Discovery, synthesis and characterization of a series of (1-alkyl-3-methyl-1H-pyrazol-5-yl)-2-(5-aryl-2H-tetrazol-2-yl)acetamides as novel GIRK1/2 potassium channel activators was written by Sharma, Swagat;Kozek, Krystian A.;Abney, Kristopher K.;Kumar, Sushil;Gautam, Nagsen;Alnouti, Yazen;David Weaver, C.;Hopkins, Corey R.. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2019.Electric Literature of C6H3FN2 This article mentions the following:

The study described the discovery and characterization of a series of 5-aryl-2H-tetrazol-3-yl acetamides as G protein-gated inwardly-rectifying potassium (GIRK) channels activators. Working from an initial hit discovered during a high-throughput screening campaign, a tetrazole scaffold was identified that shifts away from the previously reported urea-based scaffolds while remaining effective GIRK1/2 channel activators. In addition, the compounds were evaluated in Tier 1 DMPK assays and identified a (3-methyl-1H-pyrazol-1-yl)tetrahydrothiophene-1,1-dioxide head group that imparts interesting and unexpected microsomal stability compared to previously-reported pyrazole head groups. In the experiment, the researchers used many compounds, for example, 6-Fluoropicolinonitrile (cas: 3939-15-9Electric Literature of C6H3FN2).

6-Fluoropicolinonitrile (cas: 3939-15-9) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Electric Literature of C6H3FN2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem