Ni, Shengjun et al. published their research in Angewandte Chemie, International Edition in 2021 | CAS: 4783-68-0

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. The ring atoms in the pyridine molecule are sp2-hybridized. The nitrogen is involved in the 锜?bonding aromatic system using its unhybridized p orbital. The lone pair is in an sp2 orbital, projecting outward from the ring in the same plane as the 锜?bonds. Halopyridines are particularly attractive synthetic building blocks in a variety of cross-coupling methods, including the Suzuki-Miyaura cross-coupling reaction.SDS of cas: 4783-68-0

Mechanochemical Solvent-Free Catalytic C-H Methylation was written by Ni, Shengjun;Hribersek, Matic;Baddigam, Swarna K.;Ingner, Fredric J. L.;Orthaber, Andreas;Gates, Paul J.;Pilarski, Lukasz T.. And the article was included in Angewandte Chemie, International Edition in 2021.SDS of cas: 4783-68-0 This article mentions the following:

The mechanochem., solvent-free, highly regioselective, rhodium-catalyzed C-H methylation of (hetero)arenes is reported. The reaction shows excellent functional-group compatibility and is demonstrated to work for the late-stage C-H methylation of biol. active compounds The method requires no external heating and benefits from considerably shorter reaction times than previous solution-based C-H methylation protocols. Addnl., the mechanochem. approach is shown to enable the efficient synthesis of organometallic complexes that are difficult to generate conventionally. In the experiment, the researchers used many compounds, for example, 2-Phenoxypyridine (cas: 4783-68-0SDS of cas: 4783-68-0).

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. The ring atoms in the pyridine molecule are sp2-hybridized. The nitrogen is involved in the 锜?bonding aromatic system using its unhybridized p orbital. The lone pair is in an sp2 orbital, projecting outward from the ring in the same plane as the 锜?bonds. Halopyridines are particularly attractive synthetic building blocks in a variety of cross-coupling methods, including the Suzuki-Miyaura cross-coupling reaction.SDS of cas: 4783-68-0

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Li, Jing et al. published their research in Organic Letters in 2017 | CAS: 4783-68-0

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. In contrast to benzene, Pyridine’s electron density is not evenly distributed over the ring, reflecting the negative inductive effect of the nitrogen atom. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Application In Synthesis of 2-Phenoxypyridine

Nickel-Catalyzed Amination of Aryl 2-Pyridyl Ethers via Cleavage of the Carbon-Oxygen Bond was written by Li, Jing;Wang, Zhong-Xia. And the article was included in Organic Letters in 2017.Application In Synthesis of 2-Phenoxypyridine This article mentions the following:

Reaction of aryl 2-pyridyl ethers with amines was carried out via Ni-catalyzed C-OPy bond cleavage, giving aniline derivatives in reasonable to excellent yields. Both electron-rich and electron-poor aryl 2-pyridyl ethers and a wide range of amines can be used in the transformation. The method provides a conversion way for the 2-pyridyloxy directing group in the C-H bond functionalization reactions. In the experiment, the researchers used many compounds, for example, 2-Phenoxypyridine (cas: 4783-68-0Application In Synthesis of 2-Phenoxypyridine).

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. In contrast to benzene, Pyridine’s electron density is not evenly distributed over the ring, reflecting the negative inductive effect of the nitrogen atom. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Application In Synthesis of 2-Phenoxypyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Trovato, Salvatore et al. published their research in Gazzetta Chimica Italiana in 1973 | CAS: 4783-68-0

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Pyridine derivatives are also useful as small-molecule 浼?helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.Recommanded Product: 2-Phenoxypyridine

Particular applications of MIM [molecules in molecules] method. V. Electronic states and 锜?锜?transitions of diphenyl ether, phenoxypyridines, and dipyridyl ethers was written by Trovato, Salvatore;Zuccarello, Felice;Favini, Giorgio. And the article was included in Gazzetta Chimica Italiana in 1973.Recommanded Product: 2-Phenoxypyridine This article mentions the following:

The MIM method was used for comparison of the uv spectra of Ph2O, phenoxypyridines, and dipyridyl ethers. The compounds have a C-O-C angle of 120鎺?with both aromatic rings twisted by 30鎺?around the C-O bond. The absorption band at 閳?20 nm was due to a perturbed p-band and the absorption band at 270 nm was due to a perturbed 浼?band. A comparison of measured dipole moments with those calculated from ground-state wave functions was used to determine most probable mol. conformations. In the experiment, the researchers used many compounds, for example, 2-Phenoxypyridine (cas: 4783-68-0Recommanded Product: 2-Phenoxypyridine).

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Pyridine derivatives are also useful as small-molecule 浼?helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.Recommanded Product: 2-Phenoxypyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Yao, Jinzhong et al. published their research in Advanced Synthesis & Catalysis in 2013 | CAS: 4783-68-0

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. In contrast to benzene, Pyridine’s electron density is not evenly distributed over the ring, reflecting the negative inductive effect of the nitrogen atom. Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Product Details of 4783-68-0

Palladium-Catalyzed Decarboxylative Coupling of 伪- Oxocarboxylic Acids with C(sp2)-H of 2-Aryloxypyridines was written by Yao, Jinzhong;Feng, Ruokun;Wu, Zaihong;Liu, Zhanxiang;Zhang, Yuhong. And the article was included in Advanced Synthesis & Catalysis in 2013.Product Details of 4783-68-0 This article mentions the following:

An efficient palladium-catalyzed decarboxylative ortho-acylation of 2-aryloxypyridines with 伪-oxocarboxylic acids is described. In this new transformation, the aromatic C(sp2)-H bond was successfully acylated to give diverse aromatic ketones regioselectively in moderate to good yields. The pyridine group can be removed easily after the acylation to give the corresponding 2-hydroxy aromatic ketones. In the experiment, the researchers used many compounds, for example, 2-Phenoxypyridine (cas: 4783-68-0Product Details of 4783-68-0).

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. In contrast to benzene, Pyridine’s electron density is not evenly distributed over the ring, reflecting the negative inductive effect of the nitrogen atom. Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Product Details of 4783-68-0

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Wu, Zheng-Jian et al. published their research in Angewandte Chemie, International Edition in 2019 | CAS: 4783-68-0

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Halopyridines are particularly attractive synthetic building blocks in a variety of cross-coupling methods, including the Suzuki-Miyaura cross-coupling reaction.HPLC of Formula: 4783-68-0

Scalable Rhodium(III)-Catalyzed Aryl C-H Phosphorylation Enabled by Anodic Oxidation Induced Reductive Elimination was written by Wu, Zheng-Jian;Su, Feng;Lin, Weidong;Song, Jinshuai;Wen, Ting-Bin;Zhang, Hui-Jun;Xu, Hai-Chao. And the article was included in Angewandte Chemie, International Edition in 2019.HPLC of Formula: 4783-68-0 This article mentions the following:

Transition metal catalyzed C-H phosphorylation remains an unsolved challenge. Reported methods are generally limited in scope and require stoichiometric silver salts as oxidants. Reported here is an electrochem. driven RhIII-catalyzed aryl C-H phosphorylation reaction that proceeds through H2 evolution, obviating the need for stoichiometric metal oxidants. The method is compatible with a variety of aryl C-H and P-H coupling partners and particularly useful for synthesizing triarylphosphine oxides from diarylphosphine oxides, which are often difficult coupling partners for transition metal catalyzed C-H phosphorylation reactions. Exptl. results suggest that the mechanism responsible for the C-P bond formation involves an oxidation-induced reductive elimination process. In the experiment, the researchers used many compounds, for example, 2-Phenoxypyridine (cas: 4783-68-0HPLC of Formula: 4783-68-0).

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Halopyridines are particularly attractive synthetic building blocks in a variety of cross-coupling methods, including the Suzuki-Miyaura cross-coupling reaction.HPLC of Formula: 4783-68-0

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Perkampus, Heinz H. et al. published their research in Chemische Berichte in 1967 | CAS: 4783-68-0

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Quality Control of 2-Phenoxypyridine

Chemical shift of the γ-proton signal in α-substituted pyridine derivatives was written by Perkampus, Heinz H.;Krueger, Uwe. And the article was included in Chemische Berichte in 1967.Quality Control of 2-Phenoxypyridine This article mentions the following:

The chem. shifts of the γ-proton in 19 α-substituted pyridine derivatives are correlated with the electron attracting and donating properties of the substituents, and a parallelism to Hammett constants of these substituents is presented. In the experiment, the researchers used many compounds, for example, 2-Phenoxypyridine (cas: 4783-68-0Quality Control of 2-Phenoxypyridine).

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Quality Control of 2-Phenoxypyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sasmal, Sheuli et al. published their research in Chemical Communications (Cambridge, United Kingdom) in 2020 | CAS: 4783-68-0

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Pyridine, its benzo and pyridine-based compounds play diverse roles in organic chemistry. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. Synthetic Route of C11H9NO

A directing group-assisted ruthenium-catalyzed approach to access meta-nitrated phenols was written by Sasmal, Sheuli;Sinha, Soumya Kumar;Lahiri, Goutam Kumar;Maiti, Debabrata. And the article was included in Chemical Communications (Cambridge, United Kingdom) in 2020.Synthetic Route of C11H9NO This article mentions the following:

Meta-Selective C-H nitration of phenol derivatives RC6H4OR1 (R = H, 4-Me, 2-MeO, 4-Ph, etc.; R1 = pyridin-2-yl, 5-methylpyridin-2-yl, pyrimidin-2-yl) was developed using a Ru-catalyzed σ-activation strategy. Cu(NO3)2.3H2O was employed as the nitrating source, whereas Ru2(CO)12 was found to be the most suitable metal catalyst for the protocol. Mechanistic studies suggested involvement of an ortho-CAr-H metal intermediate, which promoted meta-electrophilic aromatic substitution and silver-assisted free-radical pathway. In the experiment, the researchers used many compounds, for example, 2-Phenoxypyridine (cas: 4783-68-0Synthetic Route of C11H9NO).

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Pyridine, its benzo and pyridine-based compounds play diverse roles in organic chemistry. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. Synthetic Route of C11H9NO

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Kakiuchi, Fumitoshi et al. published their research in Chemistry Letters in 2002 | CAS: 4783-68-0

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. In contrast to benzene, Pyridine’s electron density is not evenly distributed over the ring, reflecting the negative inductive effect of the nitrogen atom. Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C–H in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Related Products of 4783-68-0

A new chelation-assistance mode for a ruthenium-catalyzed silylation at the C-H bond in aromatic ring with hydrosilanes was written by Kakiuchi, Fumitoshi;Igi, Kimitaka;Matsumoto, Mitsutaka;Hayamizu, Tomoo;Chatani, Naoto;Murai, Shinji. And the article was included in Chemistry Letters in 2002.Related Products of 4783-68-0 This article mentions the following:

Ru-catalyzed reactions of aromatic compounds having an amino group or a heteroaromatic ring as a directing group with triethylsilane gave the corresponding ortho silylated products in good to excellent yields. E.g., 2-benzylpyridine reacts with HSiEt3 in the presence of 6 mol% Ru3(CO)12 and norbornene/toluene to give 2-[2-(Et3Si)C6H4]C5H4N (77% yield) or 2-[2,6-(Et3Si)2C6H3]C5H4N (13% yield). In contrast previous results, in which the reactive substrates with π-conjugation between the hetero atom in the directing group and the C atom possessing the C-H bond to be cleaved were used, the present reaction proceeds in cases of substrates having no such π-conjugation. In the experiment, the researchers used many compounds, for example, 2-Phenoxypyridine (cas: 4783-68-0Related Products of 4783-68-0).

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. In contrast to benzene, Pyridine’s electron density is not evenly distributed over the ring, reflecting the negative inductive effect of the nitrogen atom. Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C–H in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Related Products of 4783-68-0

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Cristau, Henri-Jean et al. published their research in Chemistry – A European Journal in 2004 | CAS: 4783-68-0

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. Pyridine has a conjugated system of six π electrons that are delocalized over the ring. The molecule is planar and, thus, follows the Hückel criteria for aromatic systems. Pyridine, its benzo and pyridine-based compounds play diverse roles in organic chemistry. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. Safety of 2-Phenoxypyridine

Highly efficient and mild copper-catalyzed N- and C-arylations with aryl bromides and iodides was written by Cristau, Henri-Jean;Cellier, Pascal P.;Spindler, Jean-Francis;Taillefer, Marc. And the article was included in Chemistry – A European Journal in 2004.Safety of 2-Phenoxypyridine This article mentions the following:

Mild, efficient, copper-catalyzed N-arylation procedures for nitrogen heterocycles, amides, carbamates, and C-arylation procedures for malonic acid derivatives have been developed that afford high yields of arylated products, e.g., I, with excellent selectivity. The N-arylation of imidazole with aryl bromides or iodides was found to be greatly accelerated by inexpensive, air-stable catalyst systems, combining catalytic copper salts or oxides with a set of structurally simple chelating ligands. The reaction was shown to be compatible with a broad range of aryl halides, encompassing sterically hindered, electron-poor, and electron-rich ones, providing the arylated products under particularly mild conditions. The lower limit in ligand and catalyst loading and the scope of Ullmann-type condensations catalyzed by complexes bearing those ligands with respect to the nucleophile class have also been investigated. Chelating Schiff base Chxn-Py-Al generated a remarkably general copper catalyst for N-arylation of pyrrole, indole, 1,2,4-triazole, amides, and carbamates; and C-arylation of di-Et malonate, Et cyanoacetate, and malononitrile with aryl iodides under mild conditions. The method reported here was successful with regard to Ullmann-type arylation. In the experiment, the researchers used many compounds, for example, 2-Phenoxypyridine (cas: 4783-68-0Safety of 2-Phenoxypyridine).

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. Pyridine has a conjugated system of six π electrons that are delocalized over the ring. The molecule is planar and, thus, follows the Hückel criteria for aromatic systems. Pyridine, its benzo and pyridine-based compounds play diverse roles in organic chemistry. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. Safety of 2-Phenoxypyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Simonetti, Marco et al. published their research in Journal of the American Chemical Society in 2016 | CAS: 4783-68-0

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ·mol−1 in pyridine vs. 150 kJ·mol−1 in benzene). Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C–H in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Product Details of 4783-68-0

Ru-Catalyzed C-H Arylation of Fluoroarenes with Aryl Halides was written by Simonetti, Marco;Perry, Gregory J. P.;Cambeiro, Xacobe C.;Julia-Hernandez, Francisco;Arokianathar, Jude N.;Larrosa, Igor. And the article was included in Journal of the American Chemical Society in 2016.Product Details of 4783-68-0 This article mentions the following:

Although the ruthenium-catalyzed C-H arylation of arenes bearing directing groups with haloarenes is well-known, this process has never been achieved in the absence of directing groups. We report the first example of such a process and show that unexpectedly the reaction only takes place in the presence of catalytic amounts of a benzoic acid. Furthermore, contrary to other transition metals, the arylation site selectivity is governed by both electronic and steric factors. Stoichiometric and NMR mechanistic studies support a catalytic cycle that involves a well-defined η6-arene-ligand-free Ru(II) catalyst. Indeed, upon initial pivalate-assisted C-H activation, the aryl-Ru(II) intermediate generated is able to react with an aryl bromide coupling partner only in the presence of a benzoate additive. In contrast, directing-group-containing substrates (such as 2-phenylpyridine) do not require a benzoate additive. Deuterium labeling and kinetic isotope effect experiments indicate that C-H activation is both reversible and kinetically significant. Computational studies support a concerted metalation-deprotonation (CMD)-type ruthenation mode and shed light on the unusual arylation regioselectivity. In the experiment, the researchers used many compounds, for example, 2-Phenoxypyridine (cas: 4783-68-0Product Details of 4783-68-0).

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ·mol−1 in pyridine vs. 150 kJ·mol−1 in benzene). Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C–H in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Product Details of 4783-68-0

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem