5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., Synthetic Route of 5315-25-3
Pyridine is colorless, but older or impure samples can appear yellow. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. Synthetic Route of 5315-25-3.
Reichenauer, Florian;Wang, Cui;Foerster, Christoph;Boden, Pit;Ugur, Naz;Baez-Cruz, Ricardo;Kalmbach, Jens;Carrella, Luca M.;Rentschler, Eva;Ramanan, Charusheela;Niedner-Schatteburg, Gereon;Gerhards, Markus;Seitz, Michael;Resch-Genger, Ute;Heinze, Katja research published 《 Strongly Red-Emissive Molecular Ruby [Cr(bpmp)2]3+ Surpasses [Ru(bpy)3]2+》, the research content is summarized as follows. Gaining chem. control over the thermodn. and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chem. calculations, we report a novel highly luminescent spin-flip emitter with a quantum chem. predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand′s methylene bridge acts as a Bronsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophys. and ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these mol. ruby analogs.
5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., Synthetic Route of 5315-25-3
Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem