Kim, Hyun Tae team published research in Organic Letters in 2021 | 5315-25-3

Formula: C6H6BrN, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

Pyridine is diamagnetic and has a diamagnetic susceptibility of −48.7 × 10−6 cm3·mol−1.The molecular electric dipole moment is 2.2 debyes. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. TThe standard enthalpy of formation is 100.2 kJ·mol−1 in the liquid phase and 140.4 kJ·mol−1 in the gas phase. Formula: C6H6BrN.

Kim, Hyun Tae;Kang, Eunsu;Kim, Minkyu;Joo, Jung Min research published 《 Synthesis of Bidentate Nitrogen Ligands by Rh-Catalyzed C-H Annulation and Their Application to Pd-Catalyzed Aerobic C-H Alkenylation》, the research content is summarized as follows. A new class of bidentate ligands was prepared by a modular approach involving Rh-catalyzed C-H annulation reactions. The resulting conformationally constrained ligands enabled the Pd-catalyzed C-H alkenylation at electron-rich and sterically less hindered positions of electron-rich arenes while promoting the facile oxidation of Pd(0) intermediates by oxygen. This newly introduced ligand class was complementary to the ligands developed for Pd-catalyzed oxidative reactions and may find broad application in transition-metal-catalyzed reactions.

Formula: C6H6BrN, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Kladnik, Jerneja team published research in Chemistry – A European Journal in 2019 | 5315-25-3

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., Category: pyridine-derivatives

Pyridine has a conjugated system of six π electrons that are delocalized over the ring. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. The molecule is planar and, thus, follows the Hückel criteria for aromatic systems. Category: pyridine-derivatives.

Kladnik, Jerneja;Kljun, Jakob;Burmeister, Hilke;Ott, Ingo;Romero-Canelon, Isolda;Turel, Iztok research published 《 Towards Identification of Essential Structural Elements of Organoruthenium(II)-Pyrithionato Complexes for Anticancer Activity》, the research content is summarized as follows. An organoruthenium(II) complex with pyrithione (2-mercaptopyridine N-oxide) 1 a has previously been identified by our group as a compound with promising anticancer potential without cytotoxicity towards non-cancerous cells. To expand the rather limited research on compounds of this type, an array of novel chlorido and 1,3,5-triaza-7-phosphaadamantane (pta) organoruthenium(II) complexes with methyl-substituted pyrithiones has been prepared After thorough investigation of the aqueous stability of these complexes, their modes of action have been elucidated at the cellular level. Minor structural alterations in the ruthenium-pyrithionato compounds resulted in fine-tuning of their cytotoxicities. The best performing compounds, 1 b and 2 b, with a chlorido or pta ligand bound to ruthenium, resp., and a Me group at the 3-position of the pyrithione scaffold, have been further investigated. Both compounds trigger early apoptosis, induce the generation of reactive oxygen species and G1 arrest in A549 cancer cells, and show no strong interaction with DNA. However, only 1 b also inhibits thioredoxin reductase. Wound healing assays and mitochondrial function evaluation have revealed differences between these two compounds at the cellular level.

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., Category: pyridine-derivatives

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Koller, Sebastian team published research in Helvetica Chimica Acta in 2021 | 5315-25-3

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., COA of Formula: C6H6BrN

Pyridine is colorless, but older or impure samples can appear yellow. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. COA of Formula: C6H6BrN.

Koller, Sebastian;Klein, Philippe;Reinhardt, Katja;Ochmann, Lukas;Seitz, Antonia;Jandl, Christian;Pothig, Alexander;Hintermann, Lukas research published 《 New Access Routes to Privileged and Chiral Ligands for Transition-Metal Catalyzed Hydrogen Autotransfer (Borrowing Hydrogen), Dehydrogenative Condensation, and Alkene Isomerization Reactions》, the research content is summarized as follows. A group of transition-metal catalyzed hydrogen moving reactions, encompassing hydrogen autotransfer (HAT; also called borrowing hydrogen, BH), dehydrogenative condensation (DHC) and alkene isomerization, displays high atom economy and relies on widely available starting materials. Such reactions have considerable potential for clean reaction design and application in sustainable synthesis. With the aim to develop and study synthetic applications of the title reactions, authors have set up synthetic access routes to a toolbox of structurally varied ligands for and pincer complexes of some transition metals (cobalt, ruthenium, iridium) that are well established for the title reactions. Ligand target structures, for which often improved syntheses have been found, encompass 6,6′-dihydroxy-2,2′-bipyridine, 2(3-hydroxyphenyl)pyridines (as backbones for PCN pincers), 2(6-methylpyridine-2-yl)pyridines (as backbones for PNN pincers) and 2(3-tolyl)pyridines (as backbones for PCN pincers). To support research towards asym. versions of the title reactions, they have prepared asym. modified versions of well-established catalysts, including chiral, enantiopure versions of Milstein’s PNN-ruthenium pincer, Kempe’s triazinyl-diaminophosphanyl PNP-iridium- or -cobalt pincers, Huang’s PCN-iridium pincers, and Grotjahn’s alkene zipper complex. The strategy applied to ‘chiral switching’ relied on replacing sym. dialkylphosphine donor-groups by dimenthylphosphine or aryl(menthyl)phosphine donor units. The resulting ligands or complexes have been structurally characterized, and the catalytic potential of the catalysts has been established in exploratory model reactions (transfer hydrogenation; diol to lactone dehydrogenative condensation; alkene isomerization). Several model reactions have been designed which will allow to study asym. catalytic hydrogen moving reactions.

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., COA of Formula: C6H6BrN

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Kong, Degong team published research in Organometallics in 2019 | 5315-25-3

Category: pyridine-derivatives, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

In contrast to benzene, Pyridine’s electron density is not evenly distributed over the ring, reflecting the negative inductive effect of the nitrogen atom. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. For this reason, pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ·mol−1 in pyridine vs. 150 kJ·mol−1 in benzene). Category: pyridine-derivatives.

Kong, Degong;Hu, Bowen;Yang, Min;Chen, Dafa;Xia, Haiping research published 《 Highly Regio- and Stereoselective Tridentate NCNN Cobalt-Catalyzed 1,3-Diyne Hydrosilylation》, the research content is summarized as follows. A highly regio- and stereoselective tridentate NCNN Co-catalyzed hydrosilylation of 1,3-diynes was developed. A wide range of 1,3-diynes was suitable for such transformations at room temperature, affording the corresponding silyl-functionalized 1,3-enynes in good yields within 5 min. These reactions can be readily scaled up to gram scale under mild conditions. To date, this is the most efficient Co catalytic system for the hydrosilylation of 1,3-diynes.

Category: pyridine-derivatives, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Kuleshova, Olena team published research in ACS Catalysis in 2021 | 5315-25-3

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., Reference of 5315-25-3

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Reference of 5315-25-3.

Kuleshova, Olena;Asako, Sobi;Ilies, Laurean research published 《 Ligand-Enabled, Iridium-Catalyzed ortho-Borylation of Fluoroarenes》, the research content is summarized as follows. A terpyridine derivative and an iridium complex catalyze the C-H borylation of a stoichiometric amount of a fluoroarene with high ortho-selectivity and tolerance of functional groups such as bromide, chloride, ester, ketone, amine, and in situ-borylated hydroxyl. Complex drug mols. such as haloperidol can be selectively borylated ortho to the F atom. The terpyridine ligand undergoes rollover cyclometalation to produce an N,N,C-coordinated iridium complex, which may either selectively borylate the fluoroarene by itself or undergo reductive elimination to produce a borylated ligand.

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., Reference of 5315-25-3

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Kumar, Gadde Sathish team published research in Angewandte Chemie, International Edition in 2020 | 5315-25-3

COA of Formula: C6H6BrN, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. COA of Formula: C6H6BrN.

Kumar, Gadde Sathish;Peshkov, Anatoly;Brzozowska, Aleksandra;Nikolaienko, Pavlo;Zhu, Chen;Rueping, Magnus research published 《 Nickel-Catalyzed Chain-Walking Cross-Electrophile Coupling of Alkyl and Aryl Halides and Olefin Hydroarylation Enabled by Electrochemical Reduction》, the research content is summarized as follows. The first electrochem. approach for nickel-catalyzed cross-electrophile coupling was developed. This method provides a novel route to 1,1-diarylalkane derivatives from simple and readily available alkyl and aryl halides in good yields and excellent regioselectivity under mild conditions. The procedure shows good tolerance for a broad variety of functional groups and both primary and secondary alkyl halides can be used. Furthermore, the reaction was successfully scaled up to the multigram scale, thus indicating potential for industrial application. Mechanistic study suggested the formation of a nickel hydride in the electroreductive chain-walking arylation, which led to the development of a new nickel-catalyzed hydroarylation of styrenes to provide a series of 1,1-diaryl alkanes in good yields under mild reaction conditions.

COA of Formula: C6H6BrN, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Hylland, Knut T. team published research on Dalton Transactions in 2022 | 5315-25-3

Related Products of 5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

The critical parameters of pyridine are pressure 6.70 MPa, temperature 620 K and volume 229 cm3·mol−1. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. In the temperature range 340–426 °C its vapor pressure p can be described with the Antoine equation.. Related Products of 5315-25-3.

Hylland, Knut T.;Schmidtke, Inga L.;Wragg, David S.;Nova, Ainara;Tilset, Mats research published 《 Synthesis of substituted (N,C) and (N,C,C) Au(III) complexes: the influence of sterics and electronics on cyclometalation reactions》, the research content is summarized as follows. Cyclometalated Au(III) complexes are of interest due to their catalytic, medicinal, and photophys. properties. Herein, we describe the synthesis of derivatives of the type [(N-C)Au(O2CCF3)2] and [(N-C-C)Au(O2CCF3)] by a cyclometalation route (N-C, N-C-C = chelating 2-arylpyridine ligands). The scope of the synthesis is explored by substituting the 2-arylpyridine core with electron donor or acceptor substituents at one or both rings. Notably, a variety of functionalized Au(III) complexes can be obtained in one step from the corresponding ligand and Au(OAc)3, eliminating the need for organomercury intermediates, which is commonly reported for similar syntheses. The influence of substituents in the ligand backbone on the resulting complexes was assessed using DFT calculations, 15N NMR spectroscopy and single-crystal X-ray diffraction anal. A correlation between the electronic properties of the (N-C) ligands and their ability to undergo cyclometalation was found from exptl. studies combined with natural charge anal., suggesting the cyclometalation at Au(III) to take place via an electrophilic aromatic substitution-type mechanism. The formation of Au(III) pincer complexes from tridentate (N-C-C) ligands was investigated by synthesis and DFT calculations, in order to assess the feasibility of C(sp3)-H bond activation as a synthetic pathway to (N-C-C) cyclometalated Au(III) complexes. It was found that C(sp3)-H bond activation is feasible for ligands containing different alkyl groups (iso-Pr and ethyl), although the C-H activation is less energetically favored compared to a ligand containing tert-Bu groups.

Related Products of 5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Hyun, Sung-Min team published research on Inorganic Chemistry in 2021 | 5315-25-3

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., COA of Formula: C6H6BrN

Pyridine is colorless, but older or impure samples can appear yellow. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. COA of Formula: C6H6BrN.

Hyun, Sung-Min;Reid, Kaleb A.;Vali, Shaik Waseem;Lindahl, Paul A.;Powers, David C. research published 《 Cis-divacant octahedral Fe(II) in a dimensionally reduced family of 2-(Pyridin-2-yl)pyrrolide complexes》, the research content is summarized as follows. Four-coordinate transition-metal complexes can adopt a diverse array of coordination geometries, with square planar and tetrahedral coordination being the most prevalent. Previously, we reported the synthesis of a trinuclear Fe(II) complex, Fe3TPM2, supported by a 3-fold-sym. 2-pyridylpyrrolide ligand [i.e., tris(5-(pyridin-2-yl)-1H-pyrrol-2-yl)methane] that featured a rare cis-divacant octahedral (CDO) geometry at each Fe(II) center. Here, a series of truncated 2-pyridylpyrrolide ligands are described that support mono- and binuclear Fe(II) complexes that also exhibit CDO geometries. Metalation of the tetradentate ligand bis[5-(pyridin-2-yl)-1H-pyrrol-2-yl]methane (H2BPM) in THF (THF) results in the binuclear complex Fe2(BPM)2(THF)2 in which both Fe(II) ions are octahedrally coordinated. The coordinated THF solvent ligands are labile: THF dissociation leads to Fe2(BPM)2, which features five-coordinate Fe(II) ions. The Fe-Fe distance in these binuclear complexes can be elongated by ligand methylation. Metalation of bis[5-(6-methylpyridin-2-yl)-1H-pyrrol-2-yl]methane (H2BPMMe) in THF leads to the formation of four-coordinate, CDO Fe(II) centers in Fe(BPMMe)2. Further ligand truncation affords bidentate ligands 2-(1H-pyrrol-2-yl)pyridine (PyrPyrrH) and 2-methyl-6-(1H-pyrrol-2-yl)pyridine (PyrMePyrrH). Metalation of these ligands in THF affords six-coordinate complexes Fe(PyrPyrr)2(THF)2 and Fe(PyrMePyrr)2(THF)2. Dissociation of labile solvent ligands provides access to four-coordinate Fe(II) complexes. Ligand disproportionation at Fe(PyrPyrr)2 results in the formation of Fe(PyrPyrr)3 and Fe(0). Ligand methylation suppresses this disproportionation and enables isolation of Fe(PyrMePyrr)2, which is rigorously CDO. Complete ligand truncation, by separating the 2-pyridylpyrrolide ligands into the constituent monodentate pyridyl and pyrrolide donors, affords Fe(Pyr)2(Pyrr)2 in which Fe(II) is tetrahedrally coordinated. Computational anal. indicates that the potential energy surface that dictates the coordination geometry in this family of four-coordinate complexes is fairly flat in the vicinity of CDO coordination. These synthetic studies provide the structural basis to explore the implications of CDO geometry on Fe-catalyzed reactions. Four-coordinate transition metal complexes can adopt a diverse array of coordination geometries, with square planar and tetrahedral coordination being the most prevalent. Previously, the authors reported the synthesis of a trinuclear Fe(II) complex, Fe3TPM2, supported by a three-fold sym. 2-pyridylpyrrolide ligand (i.e., tris(5-(pyridin-2-yl)-1H-pyrrol-2-yl)methane), that featured a rare cis-divacant octahedral (CDO) geometry at each Fe(II) center. Here, a series of truncated 2-pyridylpyrrolide ligands is described that support mono- and binuclear Fe(II) complexes that also exhibit CDO geometries. Metalation of tetradentate ligand bis(5-(pyridin-2-yl)-1H-pyrrol-2-yl)methane (H2BPM) in THF results in a binuclear complex Fe2(BPM)2(THF)2 in which both Fe(II) ions are octahedrally coordinated. The coordinated THF solvent ligands are labile: THF dissociation leads to Fe2(BPM)2, which features five-coordinate Fe(II) ions. The Fe-Fe distance in these binuclear complexes can be elongated by ligand methylation. Metalation of bis(5-(6-methylpyridin-2-yl)-1H-pyrrol-2-yl)methane (H2BPMMe) in THF leads to the formation of four-coordinate, CDO Fe(II) centers in Fe(BPMMe)2. Further ligand truncation affords bidentate ligands 2-(1H-pyrrol-2-yl)pyridine (PyrPyrrH) and 2-methyl-6-(1H-pyrrol-2-yl)pyridine (PyrMePyrrH). Metalation of these ligands in THF affords six-coordinate complexes Fe(PyrPyrr)2(THF)2 and Fe(PyrMePyrr)2(THF)2. Dissociation of labile solvent ligands provides access to four-coordinate Fe(II) complexes. Ligand disproportionation at Fe(PyrPyrr)2 results in the formation of Fe(PyrPyrr)3 and Fe(0). Ligand methylation suppresses this disproportionation and enables isolation of Fe(PyrMePyrr)2, which is rigorously CDO. Complete ligand truncation, by separating the 2-pyridylpyrrolide ligands into the constituent monodentate pyridyl and pyrrolide donors, affords Fe(Pyr)2(Pyrr)2 in which the Fe(II) is tetrahedrally coordinated. Computational anal. indicates that the potential energy surface that dictates the coordination geometry in this family of four-coordinate complexes is fairly flat in the vicinity of CDO coordination. These synthetic studies provide the structural basis to explore the implications of CDO geometry on Fe-catalyzed reactions.

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., COA of Formula: C6H6BrN

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Jain, Nimisha team published research on Journal of Organometallic Chemistry in 2022 | 5315-25-3

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., Recommanded Product: 2-Bromo-6-methylpyridine

Pyridine is colorless, but older or impure samples can appear yellow. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. Recommanded Product: 2-Bromo-6-methylpyridine.

Jain, Nimisha;Mary, Angelina;Manjunath, Vishesh;Sakla, Rahul;Devan, Rupesh S.;Jose, D. Amilan;Naziruddin, Abbas Raja research published 《 Ruthenium complexes bearing N-heterocyclic carbene based CNC and CNĈH2C’ pincer ligands: Photophysics, electrochemistry, and solar energy conversion》, the research content is summarized as follows. Ruthenium terpyridine-supported diimidazolylpyridine NHC complexes were prepared and examined for redox and photophys. properties. A combination of N-heterocyclic carbene (NHC) based C-N-C, or C-N-CH2C’ pincer ligands and carboxy-Ph terpyridine donors is used to prepare ruthenium complexes. The unsym. coordination of C-N-CH2C’ pincer ligand via the CN donor atoms gave a rigid five-membered ring, and binding through N-CH2C donor side rendered a six-membered chelate ring in [Ru(C-N-CH2C’)(4′-tpy-4-HO2CC6H4)](PF6)2. The latter binding gives the ruthenium center a near-ideal octahedral configuration with a more potent ligand field that could destabilize the thermally accessible-d-d states. The ambient condition excited-state lifetimes became consequently more prolonged than in the small-bite angle [Ru(C-N-C)(4′-tpy-4-HO2CC6H4)](PF6)2 congener. Enhancement of lifetimes could be essential for better electron injection into the TiO2 conduction band. Photophys. attributes of these complexes are studied to evaluate their potential use in dye-sensitized solar cells (DSSCs). The electrochem. and computational study also suggests a favorable regeneration of [Ru(C-N-CH2C’)(4′-tpy-4-HO2CC6H4)](PF6)2 bearing I3/Ielectrolyte in a DSSC set-up. We herein report the syntheses, photo-functional attributes, redox behavior, and the preliminary device characteristics. Computed geometries of complexes in different electronic states and the bonding attributes of NHC ligands in different pincer-motifs of C-N-C vs. C-N-CH2C’ are also reported.

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., Recommanded Product: 2-Bromo-6-methylpyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Jia, Chunqi team published research on European Journal of Organic Chemistry in 2020 | 5315-25-3

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., SDS of cas: 5315-25-3

At 25 °C pyridine has a viscosity of 0.88 mPa/s and thermal conductivity of 0.166 W·m−1·K−1. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. The enthalpy of vaporization is 35.09 kJ·mol−1 at the boiling point and normal pressure.The enthalpy of fusion is 8.28 kJ·mol−1 at the melting point. SDS of cas: 5315-25-3.

Jia, Chunqi;Wang, Shichong;Lv, Xulu;Li, Gang;Zhong, Lei;Zou, Lei;Cui, Xiuling research published 《 Ruthenium-Catalyzed meta-CAr-H Bond Difluoroalkylation of 2-Phenoxypyridines》, the research content is summarized as follows. A ruthenium-catalyzed meta-selective CAr-H bond difluoroalkylation of 2-phenoxypyridine using 2-bromo-2,2-difluoroacetate has been developed. Mechanistic studies indicated that this difluoroalkylation might involve a radical process. Furthermore, a new method is reported for the synthesis of 2-(meta-difluoroalkylphenoxy)pyridine derivatives, which are present in many pharmaceuticals and other functional compounds

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., SDS of cas: 5315-25-3

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem