Nogues, Isabel et al. published their research in Plant Physiology and Biochemistry in 2022 | CAS: 54-47-7

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. The ring atoms in the pyridine molecule are sp2-hybridized. The nitrogen is involved in the 蟺-bonding aromatic system using its unhybridized p orbital. The lone pair is in an sp2 orbital, projecting outward from the ring in the same plane as the 蟽 bonds. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Synthetic Route of C8H10NO6P

Arabidopsis thaliana serine hydroxymethyltransferases: functions, structures, and perspectives was written by Nogues, Isabel;Sekula, Bartosz;Angelaccio, Sebastiana;Grzechowiak, Marta;Tramonti, Angela;Contestabile, Roberto;Ruszkowski, Milosz. And the article was included in Plant Physiology and Biochemistry in 2022.Synthetic Route of C8H10NO6P The following contents are mentioned in the article:

Serine hydroxymethyltransferase (SHM) is one of the hallmarks of one-carbon metabolism In plants, isoforms of SHM participate in photorespiration and/or transfer the one-carbon unit from L-serine to tetrahydrofolate (THF), hence producing 5,10-CH2-THF that is needed, e.g., for biosynthesis of methionine, thymidylate, and purines. These links highlight the importance of SHM activity in DNA biogenesis, its epigenetic methylations, and in stress responses. Plant genomes encode several SHM isoforms that localize to cytosol, mitochondria, plastids, and nucleus. In this work, we present a thorough functional and structural characterization of all seven SHM isoforms from Arabidopsis thaliana (AtSHM1-7). In particular, we analyzed tissue-specific expression profiles of the AtSHM genes. We also compared catalytic properties of the active AtSHM1-4 in terms of catalytic efficiency in both directions and inhibition by the THF substrate. Despite numerous attempts to rescue the SHM activity of AtSHM5-7, we failed, which points towards different physiol. functions of these isoforms. Comparative anal. of exptl. and predicted three-dimensional structures of AtSHM1-7 proteins indicated differences in regions that surround the entrance to the active site cavity. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Synthetic Route of C8H10NO6P).

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. The ring atoms in the pyridine molecule are sp2-hybridized. The nitrogen is involved in the 蟺-bonding aromatic system using its unhybridized p orbital. The lone pair is in an sp2 orbital, projecting outward from the ring in the same plane as the 蟽 bonds. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Synthetic Route of C8H10NO6P

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Gnocchini, Eleonora et al. published their research in International Journal of Molecular Sciences in 2022 | CAS: 54-47-7

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Pyridine derivatives are also useful as small-molecule 伪-helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.Recommanded Product: (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate

Vitamin B6 Deficiency Promotes Loss of Heterozygosity (LOH) at the Drosophila warts (wts) Locus was written by Gnocchini, Eleonora;Pilesi, Eleonora;Schiano, Ludovica;Verni, Fiammetta. And the article was included in International Journal of Molecular Sciences in 2022.Recommanded Product: (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate The following contents are mentioned in the article:

The active form of vitamin B6, pyridoxal 5-phosphate (PLP), is a cofactor for more than 200 enzymes involved in many metabolic pathways. Moreover, PLP has antioxidant properties and quenches the reactive oxygen species (ROS). Accordingly, PLP deficiency causes chromosome aberrations in Drosophila, yeast, and human cells. In this work, we investigated whether PLP depletion can also cause loss of heterozygosity (LOH) of the tumor suppressor warts (wts) in Drosophila. LOH is usually initiated by DNA breakage in heterozygous cells for a tumor suppressor mutation and can contribute to oncogenesis inducing the loss of the wild-type allele. LOH at the wts locus results in epithelial wts homozygous tumors easily detectable on adult fly cuticle. Here, we found that PLP depletion, induced by two PLP inhibitors, promotes LOH of wts locus producing significant frequencies of wts tumors (鈭?% vs. 2.3%). In addition, we identified the mitotic recombination as a possible mechanism through which PLP deficiency induces LOH. Moreover, LOH of wts locus, induced by PLP inhibitors, was rescued by PLP supplementation. These data further confirm the role of PLP in genome integrity maintenance and indicate that vitamin B6 deficiency may impact on cancer also by promoting LOH. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Recommanded Product: (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate).

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Pyridine derivatives are also useful as small-molecule 伪-helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.Recommanded Product: (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Gnocchini, Eleonora et al. published their research in International Journal of Molecular Sciences in 2022 | CAS: 54-47-7

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. The ring atoms in the pyridine molecule are sp2-hybridized. The nitrogen is involved in the 蟺-bonding aromatic system using its unhybridized p orbital. The lone pair is in an sp2 orbital, projecting outward from the ring in the same plane as the 蟽 bonds. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Product Details of 54-47-7

Vitamin B6 Deficiency Promotes Loss of Heterozygosity (LOH) at the Drosophila warts (wts) Locus was written by Gnocchini, Eleonora;Pilesi, Eleonora;Schiano, Ludovica;Verni, Fiammetta. And the article was included in International Journal of Molecular Sciences in 2022.Product Details of 54-47-7 The following contents are mentioned in the article:

The active form of vitamin B6, pyridoxal 5-phosphate (PLP), is a cofactor for more than 200 enzymes involved in many metabolic pathways. Moreover, PLP has antioxidant properties and quenches the reactive oxygen species (ROS). Accordingly, PLP deficiency causes chromosome aberrations in Drosophila, yeast, and human cells. In this work, we investigated whether PLP depletion can also cause loss of heterozygosity (LOH) of the tumor suppressor warts (wts) in Drosophila. LOH is usually initiated by DNA breakage in heterozygous cells for a tumor suppressor mutation and can contribute to oncogenesis inducing the loss of the wild-type allele. LOH at the wts locus results in epithelial wts homozygous tumors easily detectable on adult fly cuticle. Here, we found that PLP depletion, induced by two PLP inhibitors, promotes LOH of wts locus producing significant frequencies of wts tumors (鈭?% vs. 2.3%). In addition, we identified the mitotic recombination as a possible mechanism through which PLP deficiency induces LOH. Moreover, LOH of wts locus, induced by PLP inhibitors, was rescued by PLP supplementation. These data further confirm the role of PLP in genome integrity maintenance and indicate that vitamin B6 deficiency may impact on cancer also by promoting LOH. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Product Details of 54-47-7).

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. The ring atoms in the pyridine molecule are sp2-hybridized. The nitrogen is involved in the 蟺-bonding aromatic system using its unhybridized p orbital. The lone pair is in an sp2 orbital, projecting outward from the ring in the same plane as the 蟽 bonds. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Product Details of 54-47-7

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Rocha, Juliana F. et al. published their research in ACS Catalysis in 2022 | CAS: 54-47-7

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ路mol鈭? in pyridine vs. 150 kJ路mol鈭? in benzene). Halopyridines are particularly attractive synthetic building blocks in a variety of cross-coupling methods, including the Suzuki-Miyaura cross-coupling reaction.Reference of 54-47-7

Computational Studies Devoted to the Catalytic Mechanism of Threonine Aldolase, a Critical Enzyme in the Pharmaceutical Industry to Synthesize 尾-Hydroxy-伪-amino Acids was written by Rocha, Juliana F.;Sousa, Sergio F.;Cerqueira, Nuno M. F. Sousa A.. And the article was included in ACS Catalysis in 2022.Reference of 54-47-7 The following contents are mentioned in the article:

The catalytic mechanism of threonine aldolase (TA) was herein studied in at. detail employing the computational ONIOM hybrid QM/MM methodol. TA is a PLP-dependent enzyme that catalyzes the retro-aldol cleavage of threonine into glycine and acetaldehyde, as well as the reverse reaction. This enzyme is currently seen as the optimal approach for the regioselective synthesis of 尾-hydroxy-伪-amino acids (HAAs), which are very difficult to obtain by standard methods. The results obtained herein show that the catalytic mechanism of TA occurs in three steps: (i) deprotonation of the hydroxyl group of EA1, (ii) covalent bond cleavage, and (iii) hydrolysis. According to the Gibbs free energy profile, the rate-limiting step of the catalytic process is the covalent bond cleavage, which results in the formation of acetaldehyde. The calculated energy barrier for this step is 16.7 kcal mol-1, which agrees very well with the kinetic data available in the literature (17.4 kcal mol-1). All these results can now be used for the optimization of the synthesis of HAAs that serve as building blocks of several com. drugs, such as antibiotics, immunosuppressants, and the anti-Parkinson鈥瞫 disease drug L-threo-3,4-dihydroxyphenylserine. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Reference of 54-47-7).

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ路mol鈭? in pyridine vs. 150 kJ路mol鈭? in benzene). Halopyridines are particularly attractive synthetic building blocks in a variety of cross-coupling methods, including the Suzuki-Miyaura cross-coupling reaction.Reference of 54-47-7

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Rocha, Juliana F. et al. published their research in ACS Catalysis in 2022 | CAS: 54-47-7

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Halopyridines are particularly attractive synthetic building blocks in a variety of cross-coupling methods, including the Suzuki-Miyaura cross-coupling reaction.Computed Properties of C8H10NO6P

Computational Studies Devoted to the Catalytic Mechanism of Threonine Aldolase, a Critical Enzyme in the Pharmaceutical Industry to Synthesize 尾-Hydroxy-伪-amino Acids was written by Rocha, Juliana F.;Sousa, Sergio F.;Cerqueira, Nuno M. F. Sousa A.. And the article was included in ACS Catalysis in 2022.Computed Properties of C8H10NO6P The following contents are mentioned in the article:

The catalytic mechanism of threonine aldolase (TA) was herein studied in at. detail employing the computational ONIOM hybrid QM/MM methodol. TA is a PLP-dependent enzyme that catalyzes the retro-aldol cleavage of threonine into glycine and acetaldehyde, as well as the reverse reaction. This enzyme is currently seen as the optimal approach for the regioselective synthesis of 尾-hydroxy-伪-amino acids (HAAs), which are very difficult to obtain by standard methods. The results obtained herein show that the catalytic mechanism of TA occurs in three steps: (i) deprotonation of the hydroxyl group of EA1, (ii) covalent bond cleavage, and (iii) hydrolysis. According to the Gibbs free energy profile, the rate-limiting step of the catalytic process is the covalent bond cleavage, which results in the formation of acetaldehyde. The calculated energy barrier for this step is 16.7 kcal mol-1, which agrees very well with the kinetic data available in the literature (17.4 kcal mol-1). All these results can now be used for the optimization of the synthesis of HAAs that serve as building blocks of several com. drugs, such as antibiotics, immunosuppressants, and the anti-Parkinson鈥瞫 disease drug L-threo-3,4-dihydroxyphenylserine. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Computed Properties of C8H10NO6P).

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Halopyridines are particularly attractive synthetic building blocks in a variety of cross-coupling methods, including the Suzuki-Miyaura cross-coupling reaction.Computed Properties of C8H10NO6P

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Machover, David et al. published their research in Scientific Reports in 2022 | CAS: 54-47-7

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridine is diamagnetic and has a diamagnetic susceptibility of 鈭?8.7 脳 10鈭? cm3路mol鈭?.The molecular electric dipole moment is 2.2 debyes. The standard enthalpy of formation is 100.2 kJ路mol鈭? in the liquid phase and 140.4 kJ路mol鈭? in the gas phase. Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C鈥揌 in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Application In Synthesis of (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate

Pharmacologic modulation of 5-fluorouracil by folinic acid and pyridoxine for treatment of patients with advanced breast carcinoma was written by Machover, David;Goldschmidt, Emma;Almohamad, Wathek;Castagne, Vincent;Dairou, Julien;Desterke, Christophe;Gomez, Lea;Gaston-Mathe, Yann;Boucheix, Claude. And the article was included in Scientific Reports in 2022.Application In Synthesis of (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate The following contents are mentioned in the article:

High concentration pyridoxal 5-phosphate, the cofactor of vitamin B6, potentiates cytotoxicity in cancer cells exposed to 5-fluorouracil (FUra) and folinic acid (FA). We studied the effect of high-dose pyridoxine on antitumor activity of regimens comprising FUra and FA in 27 advanced breast carcinoma patients. Of 18 previously untreated patients, 12 had tumors that did not overexpress HER2 (Group I), and 6 that overexpressed HER2 (Group II). Nine patients (Group III) had prior chemotherapy. Group I received AVCF (doxorubicin, vinorelbine, cyclophosphamide, FUra, FA) or FAC (doxorubicin, cyclophosphamide, FUra, FA) followed by TCbF (paclitaxel carboplatin, FUra, FA). Groups II, and III received TCbF. Pyridoxine iv (1000-3000 mg/day) preceded each FA and FUra. Group II also received trastuzumab and pertuzumab. 26 patients responded. Three patients in Group I had CRs and 9 had PRs with 62-98% reduction rates; 4 patients in Group II had CRs and 2 had PRs with 98% reduction Of 7 measurable patients in Group III, 2 attained CRs, and 5 had PRs with 81-94% reduction rates. Median time to response was 3.4 mo. Unexpected toxicity did not occur. This pilot study suggests that high-dose vitamin B6 enhances antitumor potency of regimens comprising FUra and FA. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Application In Synthesis of (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate).

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridine is diamagnetic and has a diamagnetic susceptibility of 鈭?8.7 脳 10鈭? cm3路mol鈭?.The molecular electric dipole moment is 2.2 debyes. The standard enthalpy of formation is 100.2 kJ路mol鈭? in the liquid phase and 140.4 kJ路mol鈭? in the gas phase. Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C鈥揌 in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Application In Synthesis of (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Karimi, Zeinab et al. published their research in Journal of Medical Virology in 2022 | CAS: 54-47-7

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ路mol鈭? in pyridine vs. 150 kJ路mol鈭? in benzene). Halopyridines are particularly attractive synthetic building blocks in a variety of cross-coupling methods, including the Suzuki-Miyaura cross-coupling reaction.Product Details of 54-47-7

The effect of influenza virus on the metabolism of peripheral blood mononuclear cells with a metabolomics approach was written by Karimi, Zeinab;Oskouie, Afsaneh A.;Rezaei, Farhad;Ajaminejad, Fatemeh;Marashi, Sayed M.;Azad, Talat-Mokhtari. And the article was included in Journal of Medical Virology in 2022.Product Details of 54-47-7 The following contents are mentioned in the article:

Respiratory viruses have led to many deaths and hospitalizations per yr in the world. The influenza virus is one of the most important respiratory viruses. Recently, metabolic studies in viral infections have been widely studied by scientists. Metabolomics states the metabolites present in a living organism under certain conditions. In this study, peripheral blood mononuclear cells were spinoculated using a virus produced by the Madin-Darby canine kidney cell culture system, and cells were harvested following spinoculation by the influenza virus. Isolation of peripheral blood mononuclear cells was performed by Ficoll-Paque d. gradient centrifugation. Metabolites were extracted using organic and water approaches. Metabolic profiling was performed by a nontargeted technique using liquid chromatog. with tandem mass spectrometry. Multivariate anal. methods were used to determine the main variables. the metabolic pathways involved were determined using databases. Results of the present study showed changes in biosynthesis pathways such as lipids, polyamines, catecholamines, and vitamins. Findings also showed that it is possible to explain the process of inflammation caused by the influenza virus by studying the metabolism of immune cells. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Product Details of 54-47-7).

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ路mol鈭? in pyridine vs. 150 kJ路mol鈭? in benzene). Halopyridines are particularly attractive synthetic building blocks in a variety of cross-coupling methods, including the Suzuki-Miyaura cross-coupling reaction.Product Details of 54-47-7

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Karimi, Zeinab et al. published their research in Journal of Medical Virology in 2022 | CAS: 54-47-7

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C鈥揌 in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Application In Synthesis of (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate

The effect of influenza virus on the metabolism of peripheral blood mononuclear cells with a metabolomics approach was written by Karimi, Zeinab;Oskouie, Afsaneh A.;Rezaei, Farhad;Ajaminejad, Fatemeh;Marashi, Sayed M.;Azad, Talat-Mokhtari. And the article was included in Journal of Medical Virology in 2022.Application In Synthesis of (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate The following contents are mentioned in the article:

Respiratory viruses have led to many deaths and hospitalizations per yr in the world. The influenza virus is one of the most important respiratory viruses. Recently, metabolic studies in viral infections have been widely studied by scientists. Metabolomics states the metabolites present in a living organism under certain conditions. In this study, peripheral blood mononuclear cells were spinoculated using a virus produced by the Madin-Darby canine kidney cell culture system, and cells were harvested following spinoculation by the influenza virus. Isolation of peripheral blood mononuclear cells was performed by Ficoll-Paque d. gradient centrifugation. Metabolites were extracted using organic and water approaches. Metabolic profiling was performed by a nontargeted technique using liquid chromatog. with tandem mass spectrometry. Multivariate anal. methods were used to determine the main variables. the metabolic pathways involved were determined using databases. Results of the present study showed changes in biosynthesis pathways such as lipids, polyamines, catecholamines, and vitamins. Findings also showed that it is possible to explain the process of inflammation caused by the influenza virus by studying the metabolism of immune cells. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Application In Synthesis of (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate).

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C鈥揌 in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Application In Synthesis of (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Lim, Hyo Jung et al. published their research in World Journal of Microbiology & Biotechnology in 2022 | CAS: 54-47-7

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Pyridine derivatives are also useful as small-molecule 伪-helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.COA of Formula: C8H10NO6P

Expression, purification, and characterization of glutamate decarboxylase from human gut-originated Lactococcus garvieae MJF010 was written by Lim, Hyo Jung;Jung, Dong-Hyun;Cho, Eui-Sang;Seo, Myung-Ji. And the article was included in World Journal of Microbiology & Biotechnology in 2022.COA of Formula: C8H10NO6P The following contents are mentioned in the article:

Human gut-originated lactic acid bacteria were cultivated, and high 纬-aminobutyric acid (GABA)-producing Lactococcus garvieae MJF010 was identified. To date, despite the importance of GABA, no studies have investigated GABA-producing Lactococcus species, except for Lc. lactis. A recombinant glutamate decarboxylase of the strain MJF010 (rLgGad) was successfully expressed in Escherichia coli BL21(DE3) with a size of 53.9 kDa. rLgGad could produce GABA, which was verified using the silylation-derivative fragment ions of GABA. The purified rLgGad showed the highest GABA-producing activity at 35掳C and pH 5. rLgGad showed a melting temperature of 43.84掳C. At 30掳C, more than 80% of the activity was maintained even after 7 h; however, it rapidly decreased at 50掳C. The kinetic parameters, Km, Vmax, and kcat, of rLgGad were 2.94 mM, 0.023 mM/min, and 12.3 min- 1, resp. The metal reagents of CaCl2, MgCl2, and ZnCl2 significantly had pos. effects on rLgGad activity. However, most coenzymes including pyridoxal 5-phosphate showed no significant effects on enzyme activity. In conclusion, this is the first report of Gad from Lc. garvieae species and provides important enzymic information related to GABA biosynthesis in the Lactococcus genus. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7COA of Formula: C8H10NO6P).

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Pyridine derivatives are also useful as small-molecule 伪-helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.COA of Formula: C8H10NO6P

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Lim, Hyo Jung et al. published their research in World Journal of Microbiology & Biotechnology in 2022 | CAS: 54-47-7

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridine is diamagnetic and has a diamagnetic susceptibility of 鈭?8.7 脳 10鈭? cm3路mol鈭?.The molecular electric dipole moment is 2.2 debyes. The standard enthalpy of formation is 100.2 kJ路mol鈭? in the liquid phase and 140.4 kJ路mol鈭? in the gas phase. Pyridine derivatives are also useful as small-molecule 伪-helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.Safety of (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate

Expression, purification, and characterization of glutamate decarboxylase from human gut-originated Lactococcus garvieae MJF010 was written by Lim, Hyo Jung;Jung, Dong-Hyun;Cho, Eui-Sang;Seo, Myung-Ji. And the article was included in World Journal of Microbiology & Biotechnology in 2022.Safety of (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate The following contents are mentioned in the article:

Human gut-originated lactic acid bacteria were cultivated, and high 纬-aminobutyric acid (GABA)-producing Lactococcus garvieae MJF010 was identified. To date, despite the importance of GABA, no studies have investigated GABA-producing Lactococcus species, except for Lc. lactis. A recombinant glutamate decarboxylase of the strain MJF010 (rLgGad) was successfully expressed in Escherichia coli BL21(DE3) with a size of 53.9 kDa. rLgGad could produce GABA, which was verified using the silylation-derivative fragment ions of GABA. The purified rLgGad showed the highest GABA-producing activity at 35掳C and pH 5. rLgGad showed a melting temperature of 43.84掳C. At 30掳C, more than 80% of the activity was maintained even after 7 h; however, it rapidly decreased at 50掳C. The kinetic parameters, Km, Vmax, and kcat, of rLgGad were 2.94 mM, 0.023 mM/min, and 12.3 min- 1, resp. The metal reagents of CaCl2, MgCl2, and ZnCl2 significantly had pos. effects on rLgGad activity. However, most coenzymes including pyridoxal 5-phosphate showed no significant effects on enzyme activity. In conclusion, this is the first report of Gad from Lc. garvieae species and provides important enzymic information related to GABA biosynthesis in the Lactococcus genus. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Safety of (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate).

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridine is diamagnetic and has a diamagnetic susceptibility of 鈭?8.7 脳 10鈭? cm3路mol鈭?.The molecular electric dipole moment is 2.2 debyes. The standard enthalpy of formation is 100.2 kJ路mol鈭? in the liquid phase and 140.4 kJ路mol鈭? in the gas phase. Pyridine derivatives are also useful as small-molecule 伪-helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.Safety of (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem