Some scientific research about 5-Bromo-2-methoxynicotinic acid

According to the analysis of related databases, 54916-66-4, the application of this compound in the production field has become more and more popular.

Reference of 54916-66-4, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 54916-66-4, name is 5-Bromo-2-methoxynicotinic acid, molecular formula is C7H6BrNO3, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

To a solution of 5-bromo-2-methoxynicotinic acid (15 g, 64.6 mmol, commercially available from, for example, Combiblocks) in DCM (100 mL) cooled to 0 0C, was added oxalyl dichloride (16.98 mL, 194.0 mmol) followed by the slow addition of DMF (5.01 mL, 64.6 mmol) at 0 C. The reactionmixture was then stirred for 18 h at rt. A small aliquot of the reaction mixture was taken and quenched with MeOH, the TLC shows the complete conversion of SM. The reaction mixture was then concentrated and re-dissolved in DCM (150 mL) and treated with ethanamine hydrochloride (7.91 g, 97 mmol). The reaction mixture was stirred for 3 h at rt. After the reaction, water was added andthe organics extracted with ethyl acetate (2 x 300 mL). The organic layer was separated, dried over Na2504, filtered and concentrated to obtain the crude product. The crude product was purified by column chromatography on a silica gel 100-200 column and was eluted with l6% EtOAc/n-hexane. The collected pure fractions were concentrated under reduced pressure to afford the desired product 5-bromo-N-ethyl-2-methoxynicotinamide (11 g, 41.0 mmol, 64 % yield) as an off-whitesolid.LCMS (10 mm RND-FA-10-MIN): Rt = 4.22 mi [MH] = 261.LCMS Conditions: RND-FA- lO-MIN:Column: Acquity BEH C18 (100 mm x 2.1 mm, 1.7 pm)Mobile Phase: A: 0.05% formic acid in ACN; B: 0.05% formic acid in waterTime (mm) /%B: 0/97, 0.4/97, 7.5/2, 9.5/2, 9.6/97, 10/97Column Temp: 35 C, Flow Rate: 0.45 mL/min

According to the analysis of related databases, 54916-66-4, the application of this compound in the production field has become more and more popular.

Reference:
Patent; GLAXOSMITHKLINE INTELLECTUAL PROPERTY (NO.2) LIMITED; ATKINSON, Stephen John; AYLOTT, Helen Elizabeth; COOPER, Anthony William James; DEMONT, Emmanuel Hubert; HARRISON, Lee Andrew; HAYHOW, Thomas George Christopher; LINDON, Matthew J; PRESTON, Alexander G; SEAL, Jonathan Thomas; WALL, Ian David; WATSON, Robert J; WOOLVEN, James Michael; (308 pag.)WO2017/37116; (2017); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 5-Bromo-2-methoxynicotinic acid

At the same time, in my other blogs, there are other synthetic methods of this type of compound,54916-66-4, 5-Bromo-2-methoxynicotinic acid, and friends who are interested can also refer to it.

Reference of 54916-66-4, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 54916-66-4, name is 5-Bromo-2-methoxynicotinic acid. A new synthetic method of this compound is introduced below.

5-Bromo-2-methoxynicotinic acid (15 g, 64.6 mmol, commercially available from, for example Apollo Scientific) was suspended in DCM (100 mL) and then oxalyl chloride (16.98 mL, 194 mmol) was added, followed by DMF (5.01 mL, 64.6 mmol) and the mixture was stirred for 18 h at rt. The solvent was evaporated in vacuo and the residue was redissolved in DCM (100 mL) and evaporated to dryness to give 5-bromo-2-methoxynicotinoyl chloride (16.33 g, 65.2 mmol, 101 % yield) which was used in the next step immediately. (0454) *H NMR (400 MHz, CDCI3) delta ppm 8.49 (d, J=2.7 Hz, 1 H) 8.44 (d, J=2.4 Hz, 1 H) 4.06 (s, 3 (0455) H).

At the same time, in my other blogs, there are other synthetic methods of this type of compound,54916-66-4, 5-Bromo-2-methoxynicotinic acid, and friends who are interested can also refer to it.

Reference:
Patent; GLAXOSMITHKLINE INTELLECTUAL PROPERTY (NO.2) LIMITED; ATKINSON, Stephen, John; DEMONT, Emmanuel, Hubert; HARRISON, Lee, Andrew; HAYHOW, Thomas, George, Christopher; LINDON, Matthew, J.; PRESTON, Alexander, G.; SEAL, Jonathan, Thomas; WALL, Ian, David; WATSON, Robert, J.; WOOLVEN, James, Michael; (91 pag.)WO2017/60180; (2017); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 5-Bromo-2-methoxynicotinic acid

According to the analysis of related databases, 54916-66-4, the application of this compound in the production field has become more and more popular.

Electric Literature of 54916-66-4, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 54916-66-4, name is 5-Bromo-2-methoxynicotinic acid, molecular formula is C7H6BrNO3, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

To a solution of 5-bromo-2-methoxynicotinic acid (15 g, 64.6 mmol, commercially available from, for example, Combiblocks) in DCM (100 mL) cooled to 0 C, was added oxalyl dichloride (16.98 mL,194.0 mmol) followed by the slow addition of DMF (5.01 mL, 64.6 mmol) at 0 C. The reaction mixture was then stirred for 18 h at rt. A small aliquot of the reaction mixture was taken and quenched with MeOH, the TLC shows the complete conversion of SM. The reaction mixture was then concentrated and re-dissolved in DCM (150 mL) and treated with ethanamine hydrochloride (7.91 g, 97 mmol). The reaction mixture was stirred for 3 h at rt. After the reaction, water was added andthe organics extracted with ethyl acetate (2 x 300 mL). The organic layer was separated, dried over Na2504, filtered and concentrated to obtain the crude product. The crude product was purified by column chromatography on a silica gel 100-200 column and was eluted with l6% EtOAc/n-hexane. The collected pure fractions were concentrated under reduced pressure to afford the desired product 5-bromo-N-ethyl-2-methoxynicotinamide (11 g, 41.0 mmol, 64 % yield) as an off-whitesolid.LCMS (10 mm RND-FA-10-MIN): Rt = 4.22 mi [MH] = 261.LCMS Conditions: RND-FA- lO-MIN:Column: Acquity BEH C18 (100 mm x 2.1 mm, 1.7 pm) Mobile Phase: A: 0.05% formic acid in ACN; B: 0.05% formic acid in waterTime (mm) /%B: 0/97, 0.4/97, 7.5/2, 9.5/2, 9.6/97, 10/97Column Temp: 35 C, Flow Rate: 0.45 mL/min

According to the analysis of related databases, 54916-66-4, the application of this compound in the production field has become more and more popular.

Reference:
Patent; GLAXOSMITHKLINE INTELLECTUAL PROPERTY (NO.2) LIMITED; ATKINSON, Stephen John; DEMONT, Emmanuel Hubert; HARRISON, Lee Andrew; HAYHOW, Thomas George Christopher; HOUSE, David; LINDON, Matthew J; PRESTON, Alexander G; SEAL, Jonathan Thomas; WALL, Ian David; WATSON, Robert J; WOOLVEN, James Michael; (141 pag.)WO2017/50714; (2017); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 5-Bromo-2-methoxynicotinic acid

According to the analysis of related databases, 54916-66-4, the application of this compound in the production field has become more and more popular.

Electric Literature of 54916-66-4, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 54916-66-4, name is 5-Bromo-2-methoxynicotinic acid. This compound has unique chemical properties. The synthetic route is as follows.

As shown in step 4(b)-i of Scheme 4(b), HATU (8.194 g, 2.55 mmol) and DIPEA (5.570g, 7.507 mL, 43.10 mmol) was added to a solution of 5-bromo-2-methoxypyridine-3- carboxylic acid (5 g, 21.55 mmol) in DMF (50 mL). The resulting solution was stirred for 10 minutes followed by the addition of ethanamine hydrochloric acid (1.757 g, 2.196 mL, 21.55 mmol). The resulting solution was stirred at room temperature for 5 hours. To the reaction mixture was added water (100 mL) and ethyl acetate (100 mL). The organic layer was separated and dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography (0-2% methanol in dichloromethane gradient) to produce 5-bromo-N-ethyl-2-methoxynicotinamide as off white solid (Compound 2015, 3.4g): 1H NMR (DMSO-d6) delta 8.41 (d, J = 2.5 Hz, 1H), 8.31 (s, 1H), 8.20-8.13 (m, 1H), 3.95 (s, 3H), 3.35-3.23 (m, 2H), 1.11 (t, J = 7.2 Hz, 3H).

According to the analysis of related databases, 54916-66-4, the application of this compound in the production field has become more and more popular.

Reference:
Patent; VERTEX PHARMACEUTICALS INCORPORATED; ARONOV, Alex; COME, Jon, H.; DAVIES, Robert, J.; PIERCE, Albert, C.; WANG, Jian; NANTHAKUMAR, Suganthini; CAO, Jingrong; BANDARAGE, Upul, K.; KRUEGER, Elaine; TIRAN, Amaud, Le; LIAO, Yusheng; MESSERSMITH, David; COLLIER, Philip, N.; GREY, Ronald; O’DOWD, Hardwin; HENDERSON, James, A.; GRILLOT, Anne-Laure; WO2011/87776; (2011); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extended knowledge of 54916-66-4

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 54916-66-4, 5-Bromo-2-methoxynicotinic acid.

Related Products of 54916-66-4, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 54916-66-4, name is 5-Bromo-2-methoxynicotinic acid, molecular formula is C7H6BrNO3, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

To a solution of 5-bromo-2-methoxynicotinic acid (5 g, 22 mmol) in dichloromethane (75 mL) was treated with Oxalyl dichloride (10 ml) by dropwise at 0 C, then the mixture was stirred at R.T. for 4 hours. A mixture of Ice- H3.H20 was poured into the react solution within an ice-bath and stirred at 0 C for more 10 min and filtered, the filter cake was dried to provide 5-bromo-2-methoxynicotinamide (4.7 g, yield: 94.4%). 1HNMR (400MHz, CDCI3) delta 8.45 (d, J= 2.4 Hz, 1H), 8.20 (d, J= 2.4 Hz, 1H), 7.78 (br, 2H), 3.94 (s, 3H). MS (M+H)+: 231 / 233.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 54916-66-4, 5-Bromo-2-methoxynicotinic acid.

Reference:
Patent; MERCK SHARP & DOHME CORP.; MCCOMAS, Casey Cameron; LIVERTON, Nigel J.; HABERMANN, Joerg; KOCH, Uwe; NARJES, Frank; LI, Peng; PENG, Xuanjia; SOLL, Richard; WU, Hao; PALANI, Anandan; HE, Shuwen; DAI, Xing; LIU, Hong; LAI, Zhong; LONDON, Clare; XIAO, Dong; ZORN, Nicolas; NARGUND, Ravi; WO2013/33971; (2013); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Some scientific research about 5-Bromo-2-methoxynicotinic acid

The synthetic route of 54916-66-4 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 54916-66-4, name is 5-Bromo-2-methoxynicotinic acid, the common compound, a new synthetic route is introduced below. Safety of 5-Bromo-2-methoxynicotinic acid

PREPARATION J In a 50 ml. round-bottomed reaction flask equipped with stirring bar and reflux condenser, there were placed 1.0 g. (0.0043 mole) of 5-bromo-2-methoxynicotinic acid (the product of Preparation I) and 10 ml. of methanol, followed by 50mul. of concentrated sulfuric acid. The resulting reaction mixture was then refluxed for a period of approximate 16 hours (i.e., overnight). Upon completion of this step, the mixture was cooled to room temperature (~20C.) and filtered, and the recovered precipitate was dried to constant weight to ultimately yield 695.8 mg. (66%) of pure methyl 5-bromo-2-methoxynicotinate (m.p. 90-101C.) in the form of a fluffy white solid. The pure product was further characterized by means of nuclear magnetic resonance data.

The synthetic route of 54916-66-4 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Goldstein Steven Wayne; Sarges Reinhard; EP306251; A2; (1989);,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem