Synthetic Route of 61160-18-7 , The common heterocyclic compound, 61160-18-7, name is 3-(Benzyloxy)-2-methylpyridin-4(1H)-one, molecular formula is C13H13NO2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.
Synthesis of iron chelator-nanoparticle systems: The general synthesis of the chelator 1 is described in scheme 3.86 Scheme 3. R=Me, Et. a: benzylchloride/NaOH/. b: NH4OH. C: hexamethyldisilazane/chlorotrimethylsilane/(2-acetoxyethoxy)methyl bromide, trimethylsilyl trifluoromethanesulfonate in 1,2-dichloroethane. c: basic hydrolysis with NH4OH. d: tosyl chloride in pyridine. e: nanoparticles with amino functional groups. f: BBr3/CH2Cl2 at 4¡ã C. for 30 min. Instead of benzyloxyethoxymethylchloride, 2-acetoxyethoxy)methyl bromide is used and the synthetic method is the same as described herein. The acetyl protection group on the side chain is removed by basic hydrolysis in methanolic ammonia solution. The mixture is stirred at room temperature in a sealed flask for 24 h. After purification by silica gel chromatography using CHCl3-MeOH (8:1) as an eluent, the deprotected hydroxyl group is converted into P-toluene-sulphonyl (tosyl) ester by the reaction with tosyl chloride (1.1 moles per mole of chelator) in dry pyridine. After removal of the solvent, the crude ester is often used directly. Before conjugation, 1 mL (100 mg/mL) of amino-modified nanoparticles are washed in 10 mL of 0.1 M sodium phosphate buffer (pH 7.4). After second wash, resuspend pellet in 10 mL of tosyl activeted chelator solution, ensuring that the particles are completely suspended by vortexing. Allow to react at 37¡ã C. for 24 hours with continuous mixing. Separate the particles conjugated with chelators by centrifugation and wash with phosphate buffered saline (pH 7.4) four times. Then, deprotect OH on pyridinone ring by BBr3 in CH2Cl2 at 4¡ã C. with shaking for 30 min. The new chelator-particle system is obtained by centrifugation and wash four times with PBS buffer. Resuspend in 10 mL 25 mM Tris buffer (pH 7.4) and store at 4¡ã C. until used. As mentioned above, if the nanoparticles could be damaged during the deprotective step, we will use an altered method to conjugate the chelator. The toluene sulfonic group (Tosyl-O-group) may be changed into an amino group by nucleophilic displacement reaction. To obtain primary amines in reasonable yield, sufficient excess ammonia is used. After that, first, deprotection of the OH group on the pyridinone ring by using the same deprotective method as above, then conjugate the chelator to Sulfo-NHS(N-hydroxysulfosuccinimide) preactivited carboxylic acid functinal nanoparticles just like chelators 2, 3, and DFO do. The chelator concentrations of the reaction solution before and after conjugation are determined by using UV-visible spectroscopy or HPLC, thereby the amount of the chelator conjugated to nanoparticles can be obtained by simply multiplying the difference of the concentrations with the reaction volume.
The synthetic route of 61160-18-7 has been constantly updated, and we look forward to future research findings.
Reference:
Patent; University of Utah Research Foundation; US2006/30619; (2006); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem