Adding a certain compound to certain chemical reactions, such as: 6200-60-8, Imidazo[1,2-a]pyridine-3-carboxylic acid, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Quality Control of Imidazo[1,2-a]pyridine-3-carboxylic acid, blongs to pyridine-derivatives compound. Quality Control of Imidazo[1,2-a]pyridine-3-carboxylic acid
General procedure: To a solution of 2-methyl-3-phenyl-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-c]pyridine, Intermediate 1, (150 mg, 0.7 mmol) in dichloromethane (DCM) (5.0 mL) was added HATU (348 mg, 0.91 mmol), followed by DIPEA (0.6 mL, 3.5 mmol) and 1-naphthoic acid (222 mg, 1.3 mmol), and the mixture stirred at room temperature for 1 h. The reaction mixture was diluted with water and the aqueous layer extracted with DCM (*2). The combined organics were washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was purified by reverse-phase HPLC (Method A) to afford the title compound as a white solid (94 mg, 36% yield). MS (ESI): mass calcd. for C24H21N3O, 367.1; m/z found, 368.1 [M+H]+. 1H NMR (400 MHz, Methanol-d4) delta 8.12-7.93 (m, 2H), 7.89-7.74 (m, 1H), 7.67-7.35 (m, 9H), 5.20-4.92 (m, 2H), 4.46-4.22 (m, 1H), 4.13-3.98 (m, 0.3H), 3.76 (d, J=54.9 Hz, 3H), 3.52-3.41 (m, 1H), 2.93-2.75 (m, 0.7H), 2.57-2.30 (m, 1H).
The synthetic route of 6200-60-8 has been constantly updated, and we look forward to future research findings.
Reference:
Patent; Janssen Pharmaceutica NV; Ameriks, Michael K.; Chen, Gang; Huang, Chaofeng; Laforteza, Brian Ngo; Ravula, Suchitra; Southgate, Emma Helen; Zhang, Wei; US2020/102303; (2020); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem