De Pascale, Martina’s team published research in ChemMedChem in 2020 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. The basicity and metallophilic high donor number of these π-deficient systems has long favored them as ligands in metal catalysis. The last decade saw pyridine assume a stronger role as functional group for directed C–H oxidation/activation.Quality Control of 2,5-Dibromopyridine

Quality Control of 2,5-DibromopyridineIn 2020 ,《Synthesis of Pyridoclax Analogues: Insight into Their Druggability by Investigating Their Physicochemical Properties and Interactions with Membranes》 appeared in ChemMedChem. The author of the article were De Pascale, Martina; Iacopetta, Domenico; Since, Marc; Corvaisier, Sophie; Vie, Veronique; Paboeuf, Gilles; Hennequin, Didier; Perato, Serge; De Giorgi, Marcella; Sinicropi, Maria Stefania; Sopkova-De Oliveira Santos, Jana; Voisin-Chiret, Anne-Sophie; Malzert-Freon, Aurelie. The article conveys some information:

Pyridoclax is considered a promising anticancer drug, acting as a protein-protein interaction disruptor, with potential applications in the treatment of ovarian, lung, and mesothelioma cancers. Eighteen sensibly selected structural analogs of Pyridoclax were synthesized, and their physicochem. properties were systematically assessed and analyzed. Moreover, considering that drug-membrane interactions play an essential role in understanding the mode of action of a given drug and its eventual toxic effects, membrane models were used to investigate such interactions in bulk (liposomes) and at the air-water interface. The measured exptl. data on all original oligopyridines allowed the assessment of relative differences in terms of physicochem. properties, which could be determinant for their druggability, and hence for drug development. In the experiment, the researchers used 2,5-Dibromopyridine(cas: 624-28-2Quality Control of 2,5-Dibromopyridine)

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. The basicity and metallophilic high donor number of these π-deficient systems has long favored them as ligands in metal catalysis. The last decade saw pyridine assume a stronger role as functional group for directed C–H oxidation/activation.Quality Control of 2,5-Dibromopyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Jia, Jianhong’s team published research in Dyes and Pigments in 2019 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Computed Properties of C5H3Br2N

Computed Properties of C5H3Br2NIn 2019 ,《Extended π-conjugated quinazolinone derivatives with enhanced third-order nonlinear optical response》 appeared in Dyes and Pigments. The author of the article were Jia, Jianhong; Zhang, Jiuming; Zhou, Chunsong; Zheng, Mingming; Feng, Dong; Liang, Guanqiu; She, Yuanbin. The article conveys some information:

Quinazolinone derivatives were designed and synthesized based to the structure of donor-π-acceptor-π-donor (D-π-A-π-D). To obtain materials with good third-order nonlinear optical response that the authors have introduced some electron-donating groups such as triarylamine, cumene, and N,N-dimethylaniline into the 8- or 2,8- position of the quinazolinone. Compared with the parent QZ-1, the target compounds showed a significant red shift. Electrochem. data and theor. calculation showed that the introduction of the donor group that extended the conjugation length of the mol. and reduced the HOMO/LOMO band gap which promoted the intramol. charge transfer (ICT). Z-scan results demonstrated that as the electron-donating ability of the donor group increased, the synthetic materials exhibit stronger nonlinear optical response. Among them, QZB-1 incorporating with 2 triarylamine groups has a γ value of 34.616 × 10-32 esu, which is up to 38 times of the parent structure. The results of this study have guiding significance for the mol. design of nonlinear optical materials. The results came from multiple reactions, including the reaction of 2,5-Dibromopyridine(cas: 624-28-2Computed Properties of C5H3Br2N)

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Computed Properties of C5H3Br2N

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Ang, Mervin Chun-Yi’s team published research in ACS Sensors in 2021 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.Name: 2,5-Dibromopyridine

Ang, Mervin Chun-Yi; Dhar, Niha; Khong, Duc Thinh; Lew, Tedrick Thomas Salim; Park, Minkyung; Sarangapani, Sreelatha; Cui, Jianqiao; Dehadrai, Aniket; Singh, Gajendra Pratap; Chan-Park, Mary B.; Sarojam, Rajani; Strano, Michael published an article in 2021. The article was titled 《Nanosensor Detection of Synthetic Auxins In Planta using Corona Phase Molecular Recognition》, and you may find the article in ACS Sensors.Name: 2,5-Dibromopyridine The information in the text is summarized as follows:

Synthetic auxins such as 1-naphthalene acetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) have been extensively used in plant tissue cultures and as herbicides because they are chem. more stable and potent than most endogenous auxins. A tool for rapid in planta detection of these compounds will enhance our knowledge about hormone distribution and signaling and facilitate more efficient usage of synthetic auxins in agriculture. In this work, we show the development of real-time and nondestructive in planta NAA and 2,4-D nanosensors based on the concept of corona phase mol. recognition (CoPhMoRe), to replace the current state-of-the-art sensing methods that are destructive and laborious. By designing a library of cationic polymers wrapped around single-walled carbon nanotubes with general affinity for chem. moieties displayed on auxins and its derivatives, we developed selective sensors for these synthetic auxins, with a particularly large quenching response to NAA (46%) and a turn-on response to 2,4-D (51%). The NAA and 2,4-D nanosensors are demonstrated in planta across several plant species including spinach, Arabidopsis thaliana (A. thaliana), Brassica rapa subsp. chinensis (pak choi), and Oryza sativa (rice) grown in various media, including soil, hydroponic, and plant tissue culture media. After 5 h of 2,4-D supplementation to the hydroponic medium, 2,4-D is seen to accumulate in susceptible dicotyledon pak choi leaves, while no uptake is observed in tolerant monocotyledon rice leaves. As such, the 2,4-D nanosensor had demonstrated its capability for rapid testing of herbicide susceptibility and could help elucidate the mechanisms of 2,4-D transport and the basis for herbicide resistance in crops. The success of the CoPhMoRe technique for measuring these challenging plant hormones holds tremendous potential to advance the plant biol. study. The experimental part of the paper was very detailed, including the reaction process of 2,5-Dibromopyridine(cas: 624-28-2Name: 2,5-Dibromopyridine)

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.Name: 2,5-Dibromopyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Hao, Zhaoran’s team published research in Dalton Transactions in 2020 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Category: pyridine-derivatives

《More efficient spin-orbit coupling: adjusting the ligand field strength to the second metal ion in asymmetric binuclear platinum(II) configurations》 was published in Dalton Transactions in 2020. These research results belong to Hao, Zhaoran; Zhang, Kai; Chen, Kuan; Wang, Pu; Lu, Zhiyun; Zhu, Weiguo; Liu, Yu. Category: pyridine-derivatives The article mentions the following:

Two types of asym. binuclear platinum(II) complexes (Pt-1 and Pt-3) bearing bridging ligands of 2-(2,4-difluorophenyl)-5-(pyridin-2-yl)pyridine and 2-(2,4-difluorophenyl)-4-(pyridin-2-yl)pyridine as well as their corresponding mononuclear counterparts (Pt-2, Pt-4, and Pt-5) were synthesized and characterized. Different chelating constructions of the second platinum(II) ions and the bridging ligands in Pt-1 and Pt-3 gave rise to two kinds of electron-transition pathway during their photophys. processes. The meta-/para-carbon of nitrogen on the center pyridyl segments set different levels of ligand field strength to the second platinum(II) ions, lowering their occupied d orbital to varying degrees. Pt-1 showed an enhanced spin-orbit coupling (SOC), caused by the addnl. metal component through direct orbital hybridization at higher states, where the fixed mol. skeleton induced by the addnl. metal-ligand bonding also helped to suppress mol. distortion in the excited state, ensuring a high quantum yield (Φ, 0.89 in toluene), which is among the best results in bimetallic complexes. While the second platinum(II) ion in Pt-3 seemed to make no contribution to the radiative transition, and only contributed to the HOMO, it provided a benefit by enlarging the conjugate system. Solution-processed organic lighting emitting devices (OLEDs) fabricated with the bimetallic Pt-1 emitter achieved superior efficiencies and up to 21% external quantum efficiency (EQE) in the Kelly-green region. In the part of experimental materials, we found many familiar compounds, such as 2,5-Dibromopyridine(cas: 624-28-2Category: pyridine-derivatives)

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Category: pyridine-derivatives

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Liang, Yuru’s team published research in Bioorganic Chemistry in 2021 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridines are often used as catalysts or reagents; particular notice has been paid recently to how pyridine coordinates to metal centers enabling a wide range of valuable reactions. Quality Control of 2,5-Dibromopyridine

Liang, Yuru; Zhang, Mao; Zhou, Pengfei; Liu, Mingming; Li, Jianqi; Wang, Yang published their research in Bioorganic Chemistry in 2021. The article was titled 《Design, synthesis and antitumor evaluation of novel chiral diaryl substituted azetidin-2-one derivatives as tubulin polymerization inhibitors》.Quality Control of 2,5-Dibromopyridine The article contains the following contents:

A novel class of diaryl substituted azetidin-2-one derivatives were designed, asym. synthesized, and evaluated for antiproliferative activities. The in vitro antitumor assay revealed that among the 4-aryl-substituted 1-(3,4,5-trimethoxyphenyl)azetidin-2-ones (B series), most possessed moderate to strong activities, with compound B7c that bears a 2-naphthyl substituent being the most potent one (IC50 0.16-0.40 μM) against a panel of human cancer cell lines. In contrast, none of the 3-(arylmethylene)-substituted 1-(3,4,5-trimethoxyphenyl)azetidin-2-ones (L series) showed significant activities in the assay. Further studies indicated that B7c inhibited tubulin polymerization, disrupted in vitro vascularization, blocked cell cycle progression at G2/M phase, induced cell apoptosis, decreased mitochondrial membrane potential, and increased the intracellular reactive oxygen species level in a dose-dependent way. Compound B7c also inhibited significantly tumor growth in a xenograft mice model with no obvious drop in the mice body weights Collectively, these results suggested that B7c and its analogs should merit further investigation as new promising antitumor agents. The results came from multiple reactions, including the reaction of 2,5-Dibromopyridine(cas: 624-28-2Quality Control of 2,5-Dibromopyridine)

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridines are often used as catalysts or reagents; particular notice has been paid recently to how pyridine coordinates to metal centers enabling a wide range of valuable reactions. Quality Control of 2,5-Dibromopyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Winterling, Erik’s team published research in Organometallics in 2021 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. SDS of cas: 624-28-2

Winterling, Erik; Ivlev, Sergei; Meggers, Eric published their research in Organometallics in 2021. The article was titled 《Chiral-at-Ruthenium Catalysts with Mixed Normal and Abnormal N-Heterocyclic Carbene Ligands》.SDS of cas: 624-28-2 The article contains the following contents:

We recently reported a new class of chiral ruthenium catalysts in which two achiral bidentate N-(2-pyridyl)-substituted N-heterocyclic carbene ligands in addition to two labile acetonitriles are coordinated to a central ruthenium and generate a stereogenic metal center which is responsible for the overall chirality. Here we now report our discovery of related chiral-at-ruthenium catalysts in which normal and abnormal N-heterocyclic carbene (NHC) ligands are present at the same time. The synthesis of racemic complexes, their resolution into individual enantiomers by a chiral auxiliary approach, and a catalytic application are reported. The mixed normal/abnormal NHC complexes display significantly increased turnover numbers and turnover frequencies for a nitrene-mediated enantioselective C(sp3)-H amination. In the experiment, the researchers used 2,5-Dibromopyridine(cas: 624-28-2SDS of cas: 624-28-2)

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. SDS of cas: 624-28-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Gong, Zhiming’s team published research in Organic Electronics in 2021 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridines form stable salts with strong acids. Pyridine itself is often used to neutralize acid formed in a reaction and as a basic solvent. HPLC of Formula: 624-28-2

Gong, Zhiming; Wang, Ru; Jiang, Yue; Kong, Xiangyu; Lin, Yue; Xu, Zhengjie; Zhou, Guofu; Liu, Jun-Ming; Kempa, Krzysztof; Gao, Jinwei published an article in 2021. The article was titled 《Novel D-A-D type small-molecular hole transport materials for stable inverted perovskite solar cells》, and you may find the article in Organic Electronics.HPLC of Formula: 624-28-2 The information in the text is summarized as follows:

Hole transport materials (HTMs), as a critical role in the hole extraction and transportation processes, highly influence the efficiency and stability of perovskite solar cells (PSCs). Despite that several efficient dopant-free HTMs have been reported, there is still no clear structure-property relationship that could give instructions for the rational mol. design of efficient HTMs. Thus, in this work, a series of donor-acceptor-donor (D-A-D) type carbazole-based small mols., TM-1 to TM-4, have been carefully designed and synthesized. By varing the electron acceptor unit from benzene to pyridine, pyrazine and diazine, their packing structure in single crystals, optical and electronic properties have shown a great difference. While as dopant-free HTM in p-i-n type PSCs, TM-2 improved the device photovoltaic performance with a power conversion efficiency from 15.02% (based on PEDOT:PSS) to 16.13%. Moreover, the unencapsulated device based on TM-2 retains about 80% of its initial efficiency after 500 h storage in ambient environment, showing the superior stability.2,5-Dibromopyridine(cas: 624-28-2HPLC of Formula: 624-28-2) was used in this study.

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridines form stable salts with strong acids. Pyridine itself is often used to neutralize acid formed in a reaction and as a basic solvent. HPLC of Formula: 624-28-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Zheng, Mingming’s team published research in Dyes and Pigments in 2019 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. Additionally, pyridine-based natural products continue to be discovered and studied for their properties and to understand their biosynthesis.SDS of cas: 624-28-2

《Facile synthesis of extended TPA-quinazolinone derivatives and the nonlinear optical properties》 was written by Zheng, Mingming; Zhang, Jiuming; Wang, Wenbiao; Gao, Jianrong; Jia, Jianhong. SDS of cas: 624-28-2This research focused ontriphenylamine quinazolinone derivative synthesis Suzuki cross coupling reaction; fluorescence photophys nonlinear optical property. The article conveys some information:

In this work, four new quinazolinone (QZ)-based compounds containing triphenylamine (TPA) moiety have been synthesized, defined as QZC, QZC-1, QZC-2, QZC-3, for the application of third-order nonlinear optical (NLO) responses. A new design of two-step synthesis has been put forward, the first step is Ullmann reaction with QZ, and the second is connecting QZ and the substituted triphenylamines (TPAs) through a Suzuki cross-coupling reaction to afford the target products. Electrochem. measurement data indicated that the tuning of the HOMO and LUMO energy levels can be easily achieved by introducing and modifying the donor moiety. The NLO properties were evaluated by the Z-scan technique which showed that introduction of a benzene ring as a π bridge could reduce the transmission energy of electrons from a ground state to an excited state, and the added methoxy in TPA moiety could promote the ICT, and improve the third-order NLO properties of mols. Theor. calculations matched well with the electrochem. information and NLO information. The results suggest that the materials based on QZ have potential applications in integrated NLO devices. In the experiment, the researchers used 2,5-Dibromopyridine(cas: 624-28-2SDS of cas: 624-28-2)

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. Additionally, pyridine-based natural products continue to be discovered and studied for their properties and to understand their biosynthesis.SDS of cas: 624-28-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Guo, Song’s team published research in Science China: Chemistry in 2019 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Electric Literature of C5H3Br2N

The author of 《Mitochondria-localized iridium(III) complexes with anthraquinone groups as effective photosensitizers for photodynamic therapy under hypoxia》 were Guo, Song; Han, Meiping; Chen, Ruizhe; Zhuang, Yanling; Zou, Liang; Liu, Shujuan; Huang, Wei; Zhao, Qiang. And the article was published in Science China: Chemistry in 2019. Electric Literature of C5H3Br2N The author mentioned the following in the article:

Photodynamic therapy (PDT) is a potential way for the tumor treatment. However, it notably suffers the limitation of hypoxia in solid tumors. Thus, it is significant to develop effective photosensitizers which can exhibit excellent therapeutic performance under both normoxia and hypoxia. Herein, we reported four ionic iridium(III) complexes (Ir1-Ir4) with anthraquinone groups which can regulate their excited state energy levels effectively. Among them, the energy gap of Ir1 was between 1.63 and 2.21 eV, which can match well with that of O2, and the HOMO energy of Ir1 is less than -5.51 eV. Compared with Ir2-Ir4, the luminescent quantum efficiency of Ir1 was the highest. Particularly, Ir1 can specifically target the mitochondria of the tumor cells. Meanwhile, Ir1 showed high singlet oxygen quantum yields (φΔ) in both solutions and living cells with low cytotoxicity. The results of PDT experiments revealed that Ir1, as a photosensitizer, exhibited excellent therapeutic effect not only in normoxia but also in hypoxia condition. We believe that this work is meaningful for developing excellent PDT agents based on cyclometalated Ir(III) complexes via rational ligand modification. In the experiment, the researchers used many compounds, for example, 2,5-Dibromopyridine(cas: 624-28-2Electric Literature of C5H3Br2N)

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Electric Literature of C5H3Br2N

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Paymode, Dinesh J.’s team published research in Organic Letters in 2021 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridines are often used as catalysts or reagents; particular notice has been paid recently to how pyridine coordinates to metal centers enabling a wide range of valuable reactions. Product Details of 624-28-2

Paymode, Dinesh J.; Chang, Le; Chen, Dan; Wang, Binglin; Kashinath, Komirishetty; Gopalsamuthiram, Vijayagopal; McQuade, D. Tyler; Vasudevan, N.; Ahmad, Saeed; Snead, David R. published their research in Organic Letters in 2021. The article was titled 《Application of Vinamidinium Salt Chemistry for a Palladium Free Synthesis of Anti-Malarial MMV048: A “”Bottom-Up”” Approach》.Product Details of 624-28-2 The article contains the following contents:

MMV390048 is a clin. compound under investigation for antimalarial activity. A new synthetic route was developed which couples two aromatic fragments while forming the central pyridine ring over two steps. This sequence takes advantage of raw materials used in the existing etoricoxib supply chain and eliminates the need for palladium catalysts, which were projected to be major cost-drivers. In the experimental materials used by the author, we found 2,5-Dibromopyridine(cas: 624-28-2Product Details of 624-28-2)

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridines are often used as catalysts or reagents; particular notice has been paid recently to how pyridine coordinates to metal centers enabling a wide range of valuable reactions. Product Details of 624-28-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem