Share a compound : 3-Ethynylpyridin-2-amine

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 67346-74-1, 3-Ethynylpyridin-2-amine.

Reference of 67346-74-1, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 67346-74-1, name is 3-Ethynylpyridin-2-amine. This compound has unique chemical properties. The synthetic route is as follows.

Reference Example 70 3-(3-(4-Butyl-benzyl)-isoxazol-5-yl)-pyridin-2-ylamine; To a tetrahydrofuran (3 mL) solution of (4-butyl-phenyl)-acetohydroximoyl chloride (150 mg, 0.665 mmol) described in Manufacturing Example 70-1-3 and 3-ethynyl-pyridin-2-ylamine (50 mg, 0.424 mmol) described in Manufacturing Example 1-2-3 was added triethylamine (232 muL, 1.66 mmol) at room temperature, which was stirred for 8 hours at 50¡ã C. Water was added to the reaction solution at room temperature, which was then extracted with ethyl acetate. The organic layer was washed with water and saturated aqueous sodium chloride, and dried over anhydrous magnesium sulfate, and the solvent was evaporated under a reduced pressure. The residue was purified by NH silica gel column chromatography (heptane:ethyl acetate=4:1-2:1) to obtain the title compound (55 mg, 18percent).1H-NMR Spectrum (CDCl3) delta (ppm): 0.91-0.94 (3H, m), 1.31-1.40 (2H, m), 1.55-1.63 (2H, m), 2.57-2.61 (2H, m), 4.03 (2H, s), 5.53 (2H, brs), 6.26 (1H, s), 6.70-6.73 (1H, m), 7.14-7.20 (4H, m), 7.71-7.73 (1H, m), 8.11-8.13 (1H, m).

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 67346-74-1, 3-Ethynylpyridin-2-amine.

Reference:
Patent; Tanaka, Keigo; Yamamoto, Eiichi; Watanabe, Naoaki; US2009/82403; (2009); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Some tips on 67346-74-1

At the same time, in my other blogs, there are other synthetic methods of this type of compound,67346-74-1, 3-Ethynylpyridin-2-amine, and friends who are interested can also refer to it.

Reference of 67346-74-1, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 67346-74-1, name is 3-Ethynylpyridin-2-amine. A new synthetic method of this compound is introduced below.

Reference Example 48 3-(3-(5-p-Tolyloxy-thiophen-2-ylmethyl)-isoxazol-5-yl)-pyridin-2-ylamine; To a tetrahydrofuran (7.00 mL) solution of (5-p-tolyloxy-thiophen-2-yl)-acetohydroximoyl chloride (191 mg, 0.678 mmol) described in Manufacturing Example 48-1-5 and 3-ethynyl-pyridin-2-ylamine (40.0 mg, 0.339 mmol) described in Manufacturing Example 1-2-3 was added triethylamine (189 muL, 1.36 mmol) at room temperature, which was stirred for 4 hours at room temperature. Water was added to the reaction solution at room temperature, which was then extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride and dried over anhydrous magnesium sulfate, and the solvent was evaporated under a reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate_heptane=1:3) to obtain the title compound (2.03 mg, 1.65percent).1H-NMR Spectrum (DMSO-d6) delta (ppm): 2.32 (3H, s), 4.14 (2H, s), 5.54 (2H, brs), 6.34-6.36 (1H, m), 6.40 (1H, s), 6.62-6.63 (1H, m), 6.73-6.77 (1H, m), 6.98-7.00 (2H, m), 7.11-7.13 (2H, m), 7.76-7.78 (1H, m), 8.14-8.15 (1H, m).

At the same time, in my other blogs, there are other synthetic methods of this type of compound,67346-74-1, 3-Ethynylpyridin-2-amine, and friends who are interested can also refer to it.

Reference:
Patent; Tanaka, Keigo; Yamamoto, Eiichi; Watanabe, Naoaki; US2009/82403; (2009); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of Electric Literature of 67346-74-1

Statistics shows that 67346-74-1 is playing an increasingly important role. we look forward to future research findings about 3-Ethynylpyridin-2-amine.

Electric Literature of 67346-74-1, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.67346-74-1, name is 3-Ethynylpyridin-2-amine, molecular formula is C7H6N2, molecular weight is 118.1359, as common compound, the synthetic route is as follows.

To an anhydrous tetrahydrofuran (5 mL) solution of 3-ethynyl-pyridin-2-ylamine (33.1 mg, 0.281 mmol) described in Manufacturing Example 1-2-3 was added (4-(2-furan-2-yl-ethyl) phenyl)-acetohydroximoyl chloride (224 mg, 0.85 mmol) described in Manufacturing Example 80-1-7 under nitrogen atmosphere at room temperature. Triethylamine (0.24 mL, 1.7 mmol) was then added dropwise, followed by 1.5 hours of stirring at 60¡ã C. The reaction mixture was partitioned into water and ethyl acetate at room temperature. The organic layer was washed with water and saturated aqueous sodium chloride and dried over anhydrous magnesium sulfate, and the solvent was evaporated under a reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate_heptane=1:9 then 3:7) to obtain the title compound (39.6 mg, 40.8percent). 1H-NMR Spectrum (CDCl3) delta (ppm): 2.88-2.98 (4H, m), 4.03 (2H, s), 5.41 (2H, brs), 5.97 (1H, d, J=3.2 Hz), 6.25 (1H, s), 6.27 (1H, dd, J=2.0, 3.2 Hz), 6.71 (1H, dd, J=4.8, 8.0 Hz), 7.15 (2H, d, J=8.4 Hz), 7.20 (2H, d, J=8.4 Hz), 7.31 (1H, d, J=2.0 Hz), 7.70 (1H, dd, J=2.0, 8.0 Hz), 8.13 (1H, dd, J=2.0, 4.8 Hz).

Statistics shows that 67346-74-1 is playing an increasingly important role. we look forward to future research findings about 3-Ethynylpyridin-2-amine.

Reference:
Patent; Eisai R&D Management Co., Ltd.; US2007/105904; (2007); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem