The origin of a common compound about 2,3-Dichloro-5-(trichloromethyl)pyridine

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 69045-83-6, 2,3-Dichloro-5-(trichloromethyl)pyridine.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 69045-83-6, name is 2,3-Dichloro-5-(trichloromethyl)pyridine. A new synthetic method of this compound is introduced below., Recommanded Product: 2,3-Dichloro-5-(trichloromethyl)pyridine

26.5 g 0.1 mol 2,3-dichloro-5-trichloromethylpyridine,0.2 g of tungsten hexachlor into the reactor,Heated to 170 C at atmospheric pressure,And then hydrogen fluoride (about 20 g)The reaction is terminated when the test product is no longer changed,Unreacted hydrogen fluoride,After condensing recovery,The generated hydrogen chloride can be absorbed and removed.The reaction solution was cooled to room temperature,Transferred to an autoclave,Heated to 180 C,Pressure 0.2MPa,Reaction 5h,Cooling down,Sampling analysis,Containing 2,3-dichloro-5-trifluoromethylpyridine 94%Yield 92%.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 69045-83-6, 2,3-Dichloro-5-(trichloromethyl)pyridine.

Reference:
Patent; Nanjing Red Sun Biochemistry Co., Ltd.; Wang, Wenkui; Luo, Chaoran; Chen, Xinchun; Jiang, Jianhua; Zhong, Jinsong; (5 pag.)CN106397309; (2017); A;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Simple exploration of 69045-83-6

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,69045-83-6, its application will become more common.

Related Products of 69045-83-6, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 69045-83-6 as follows.

2, 3-dichloro-5-trichloromethylpyridine (36.60 g, 0.139 mol) was added to a flask containing acetic acid (53.50 g, 0.892 mol) and methanol (200 mL). The mixture was cooled to-5 C, and zinc dust (20.01 g, 0.308 mol) was added in small portions at 10 minute intervals. The mixture was stirred mechanically for 4 hours, filtered, and concentrated in vacuo. The residue was dissolved in dichloromethane and washed with brine, followed by saturated aqueous sodium bicarbonate, followed by a second brine wash. The organic phase was dried over magnesium sulfate and concentrated in vacuo to yield 21.55 g (79%) of Preparatory Compound P, 2, 3-DICHLORO-5- (CHLOROMETHYL) pyridine, as a yellow liquid (about 65% PURITY). 1H NMR No. 8.31 (d, 1H, J=2.3 Hz), 7.85 (q, 1H, J=0.4 Hz and J=2.2 Hz), 4.56 (s, 2H). MS (ESI) NIZ 199 ([M+4] +, 8), 197 ([M+2]+, 27), 195 ([M]+, 28), 164 (11), 162 (66), 160 (100), 124 (19)

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,69045-83-6, its application will become more common.

Reference:
Patent; DOW AGROSCIENCES LLC; WO2004/57960; (2004); A2;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 69045-83-6

According to the analysis of related databases, 69045-83-6, the application of this compound in the production field has become more and more popular.

Synthetic Route of 69045-83-6, Adding some certain compound to certain chemical reactions, such as: 69045-83-6, name is 2,3-Dichloro-5-(trichloromethyl)pyridine,molecular formula is C6H2Cl5N, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 69045-83-6.

500 g (3.08 mol) of 2-chloro-5-chloromethylpyridine (molecular weight: 162 g / mol) and 50 g (10% by weight) of copper oxide were charged into a 1 L four-necked flask equipped with a thermometer, a condenser and a mechanical stir And heated to 275 C, and then chlorinated by passing Cl 2 into the above solution, and the reaction was carried out for 60 hours to obtain 562 g (2.12 mol) of 2,3-dichloro-5-trichloromethylpyridine. A solution of 562 g (2.12 mol) of 2,3-dichloro-5-trichloromethylpyridine was heated to 70 C and added with 5 g of catalyst antimony pentachloride followed by 210 g (10.5 mol) of hydrogen fluoride at 200 C, 8.5 MPa pressure for 30 hours to give 421 g (1.95 mol) of 2,3-dichloro-5-trifluoromethylpyridine in a yield of 63.2% from 2-chloro-5-chloromethylpyridine,

According to the analysis of related databases, 69045-83-6, the application of this compound in the production field has become more and more popular.

Reference:
Patent; LI, BO; YU, JIANHAN; (5 pag.)CN104557683; (2016); B;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New learning discoveries about 2,3-Dichloro-5-(trichloromethyl)pyridine

The synthetic route of 69045-83-6 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 69045-83-6, name is 2,3-Dichloro-5-(trichloromethyl)pyridine, the common compound, a new synthetic route is introduced below. Application In Synthesis of 2,3-Dichloro-5-(trichloromethyl)pyridine

EXAMPLE 10 2,3-Dichloro-5-(trifluoromethyl)pyridine STR12 A 360 milliliter (ml) TEFLON PFA reaction flask, fitted with a PFA reflux condenser, an HF bleed tube, a magnetic stirrer and an optical pyrometer, was charged with 180 grams (g) of 2,3-dichloro-5-(trichloromethyl)pyridine and 4.3 g (5 mole percent) of FeCl2. Anhydrous HF gas was introduced into the reaction mixture (~4 g/hr) below the surface of the liquid as the reaction mixture was heated to a temperature between 170 C. and 175 C. This temperature (170-175 C.) was maintained for a period of 70 hours with constant agitation. Standard gas-liquid chromatography (GLC) analysis of the product indicated that the reaction product contained:

The synthetic route of 69045-83-6 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; The Dow Chemical Company; US4590279; (1986); A;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 69045-83-6

The synthetic route of 69045-83-6 has been constantly updated, and we look forward to future research findings.

Related Products of 69045-83-6 , The common heterocyclic compound, 69045-83-6, name is 2,3-Dichloro-5-(trichloromethyl)pyridine, molecular formula is C6H2Cl5N, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

The chlorinated 2,3-dichloro-5-trichloromethylpyridine was put into a fluorination kettle (about 2300 kg).Injecting catalyst into the reaction fluorineAntimony pentafluoride 200kg,Add 1700kg of anhydrous hydrogen fluoride,The molar ratio of 2,3-dichloro-5-trichloromethylpyridine to hydrogen fluoride is 1:10.Excessive hydrogen fluoride facilitates the reaction.Turn on the reactor and stir, heat up and keep at 180 C.The reaction was carried out at a pressure of 6 MPa for 24 hours, and the temperature was lowered to 60 C.Transfer the material to 3000L in advanceWater in the washing kettle,The material is washed twice and then neutralized to a pH of 7,The material is then layered into a rectification tank.The mixture was subjected to vacuum distillation to obtain 2-fluoro-3-chloro-5-trifluoromethylpyridine having a content of ?99%.

The synthetic route of 69045-83-6 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Shandong Huimeng Biological Technology Co., Ltd.; Xiao Caigen; Liu Shuwen; (7 pag.)CN107935920; (2018); A;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Simple exploration of 69045-83-6

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 69045-83-6, 2,3-Dichloro-5-(trichloromethyl)pyridine, other downstream synthetic routes, hurry up and to see.

Synthetic Route of 69045-83-6 ,Some common heterocyclic compound, 69045-83-6, molecular formula is C6H2Cl5N, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Take intermediate 2,3-dichloro-5-trichloromethylpyridine 50g,After adding the catalyst, the temperature is raised to 170C.Slowly introduce anhydrous hydrogen fluoride gas,Reaction 11h, after the end of the reaction, neutralized with 5% sodium bicarbonate solution,Separate the organic phase, washed,The crude product obtained after drying was 2,3-dichloro-5-trifluoromethylpyridine as the desired material in an amount of 85% and the yield was 65%.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 69045-83-6, 2,3-Dichloro-5-(trichloromethyl)pyridine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; Shandong Eastern Countries Nong Pharmaceutical Ji Industrial Co., Ltd.; Yu Lexiang; Li Yuan; Liu Weihua; Sun Meixin; Sun Fujiang; (7 pag.)CN106748985; (2017); A;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 69045-83-6

According to the analysis of related databases, 69045-83-6, the application of this compound in the production field has become more and more popular.

Synthetic Route of 69045-83-6, Adding some certain compound to certain chemical reactions, such as: 69045-83-6, name is 2,3-Dichloro-5-(trichloromethyl)pyridine,molecular formula is C6H2Cl5N, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 69045-83-6.

500 g (3.08 mol) of 2-chloro-5-chloromethylpyridine (molecular weight: 162 g / mol) and 50 g (10% by weight) of copper oxide were charged into a 1 L four-necked flask equipped with a thermometer, a condenser and a mechanical stir And heated to 275 C, and then chlorinated by passing Cl 2 into the above solution, and the reaction was carried out for 60 hours to obtain 562 g (2.12 mol) of 2,3-dichloro-5-trichloromethylpyridine. A solution of 562 g (2.12 mol) of 2,3-dichloro-5-trichloromethylpyridine was heated to 70 C and added with 5 g of catalyst antimony pentachloride followed by 210 g (10.5 mol) of hydrogen fluoride at 200 C, 8.5 MPa pressure for 30 hours to give 421 g (1.95 mol) of 2,3-dichloro-5-trifluoromethylpyridine in a yield of 63.2% from 2-chloro-5-chloromethylpyridine,

According to the analysis of related databases, 69045-83-6, the application of this compound in the production field has become more and more popular.

Reference:
Patent; LI, BO; YU, JIANHAN; (5 pag.)CN104557683; (2016); B;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New learning discoveries about 2,3-Dichloro-5-(trichloromethyl)pyridine

The synthetic route of 69045-83-6 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 69045-83-6, name is 2,3-Dichloro-5-(trichloromethyl)pyridine, the common compound, a new synthetic route is introduced below. Application In Synthesis of 2,3-Dichloro-5-(trichloromethyl)pyridine

EXAMPLE 10 2,3-Dichloro-5-(trifluoromethyl)pyridine STR12 A 360 milliliter (ml) TEFLON PFA reaction flask, fitted with a PFA reflux condenser, an HF bleed tube, a magnetic stirrer and an optical pyrometer, was charged with 180 grams (g) of 2,3-dichloro-5-(trichloromethyl)pyridine and 4.3 g (5 mole percent) of FeCl2. Anhydrous HF gas was introduced into the reaction mixture (~4 g/hr) below the surface of the liquid as the reaction mixture was heated to a temperature between 170 C. and 175 C. This temperature (170-175 C.) was maintained for a period of 70 hours with constant agitation. Standard gas-liquid chromatography (GLC) analysis of the product indicated that the reaction product contained:

The synthetic route of 69045-83-6 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; The Dow Chemical Company; US4590279; (1986); A;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 69045-83-6

The synthetic route of 69045-83-6 has been constantly updated, and we look forward to future research findings.

Related Products of 69045-83-6 , The common heterocyclic compound, 69045-83-6, name is 2,3-Dichloro-5-(trichloromethyl)pyridine, molecular formula is C6H2Cl5N, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

The chlorinated 2,3-dichloro-5-trichloromethylpyridine was put into a fluorination kettle (about 2300 kg).Injecting catalyst into the reaction fluorineAntimony pentafluoride 200kg,Add 1700kg of anhydrous hydrogen fluoride,The molar ratio of 2,3-dichloro-5-trichloromethylpyridine to hydrogen fluoride is 1:10.Excessive hydrogen fluoride facilitates the reaction.Turn on the reactor and stir, heat up and keep at 180 C.The reaction was carried out at a pressure of 6 MPa for 24 hours, and the temperature was lowered to 60 C.Transfer the material to 3000L in advanceWater in the washing kettle,The material is washed twice and then neutralized to a pH of 7,The material is then layered into a rectification tank.The mixture was subjected to vacuum distillation to obtain 2-fluoro-3-chloro-5-trifluoromethylpyridine having a content of ?99%.

The synthetic route of 69045-83-6 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Shandong Huimeng Biological Technology Co., Ltd.; Xiao Caigen; Liu Shuwen; (7 pag.)CN107935920; (2018); A;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Simple exploration of 69045-83-6

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 69045-83-6, 2,3-Dichloro-5-(trichloromethyl)pyridine, other downstream synthetic routes, hurry up and to see.

Synthetic Route of 69045-83-6 ,Some common heterocyclic compound, 69045-83-6, molecular formula is C6H2Cl5N, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Take intermediate 2,3-dichloro-5-trichloromethylpyridine 50g,After adding the catalyst, the temperature is raised to 170C.Slowly introduce anhydrous hydrogen fluoride gas,Reaction 11h, after the end of the reaction, neutralized with 5% sodium bicarbonate solution,Separate the organic phase, washed,The crude product obtained after drying was 2,3-dichloro-5-trifluoromethylpyridine as the desired material in an amount of 85% and the yield was 65%.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 69045-83-6, 2,3-Dichloro-5-(trichloromethyl)pyridine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; Shandong Eastern Countries Nong Pharmaceutical Ji Industrial Co., Ltd.; Yu Lexiang; Li Yuan; Liu Weihua; Sun Meixin; Sun Fujiang; (7 pag.)CN106748985; (2017); A;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem