Aydemir, Murat et al. published their research in Journal of Molecular Catalysis A: Chemical in 2010 |CAS: 75449-26-2

The Article related to crystal structure hydroxybenzylidene bipyridinyldiamine schiff base preparation, mol structure hydroxybenzylidene bipyridinyldiamine schiff base, ruthenium schiff base phosphinite bridged dinuclear complex preparation, ketone transfer hydrogenation catalyst ruthenium schiff base phosphinite complex and other aspects.COA of Formula: C10H10N4

On July 1, 2010, Aydemir, Murat; Durap, Feyyaz; Baysal, Akin; Meric, Nermin; Buldag, Ayseguel; Guemguem, Bahattin; Oezkar, Saim; Yildirim, Leyla Tatar published an article.COA of Formula: C10H10N4 The title of the article was Novel neutral phosphinite bridged dinuclear ruthenium(II) arene complexes and their catalytic use in transfer hydrogenation of aromatic ketones: X-ray structure of a new Schiff base, N3,N3′-di-2-hydroxybenzylidene-[2,2′]bipyridinyl-3,3′-diamine. And the article contained the following:

A novel Schiff base N3,N3′-di-2-hydroxybenzylidene-[2,2′]bipyridinyl-3,3′-diamine (1) was synthesized from condensation of salicylaldehyde with 3,3′-diamino-2,2′-bipyridine. Reaction of 1 with two equivalent of PPh2Cl in the presence of Et3N proceeds in toluene to give N3,N3′-di-2-(diphenylphosphino)benzylidene-[2,2′]bipyridinyl-3,3′-diamine (2) in quant. yield. Ruthenium(II) dimers [Ru(η6-arene)(μ-Cl)Cl]2 readily react with phosphinite ligand [(Ph2PO)2-C24H16N4], 2 in toluene at room temperature, to afford the neutral derivatives [C24H16N4{OPPh2-Ru(η6-arene)Cl2}2] {arene = benzene 3; p-cymene, 4}. All the complexes were fully characterized by anal. and spectroscopic methods. 31P-{1H} NMR, 1H-13C HETCOR or 1H-1H COSY correlation experiments were used to confirm the spectral assignments. Mol. structure of the Schiff base, 1 was also determined by x-ray single crystal diffraction study. The catalytic activity of complexes 3 and 4 in the transfer hydrogenation of acetophenone derivatives was tested. Stable ruthenium(II)-phosphinite complexes were found to be efficient catalysts in the transfer hydrogenation of aromatic ketones in excellent conversions up to 99% (up to 530 per h) in the presence of iso-PrOH/KOH. The experimental process involved the reaction of [2,2′-Bipyridine]-3,3′-diamine(cas: 75449-26-2).COA of Formula: C10H10N4

The Article related to crystal structure hydroxybenzylidene bipyridinyldiamine schiff base preparation, mol structure hydroxybenzylidene bipyridinyldiamine schiff base, ruthenium schiff base phosphinite bridged dinuclear complex preparation, ketone transfer hydrogenation catalyst ruthenium schiff base phosphinite complex and other aspects.COA of Formula: C10H10N4

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Hurley, Nicholas J. et al. published their research in Inorganic Chemistry in 2014 |CAS: 75449-26-2

The Article related to transition metal bispicolinamidobipyridine multinuclear complex coordination polymer preparation, crystal structure transition metal bispicolinamidobipyridine multinuclear complex coordination polymer, magnetic property transition metal bispicolinamidobipyridine multinuclear complex coordination polymer and other aspects.SDS of cas: 75449-26-2

On August 18, 2014, Hurley, Nicholas J.; Hayward, John J.; Rawson, Jeremy M.; Murrie, Mark; Pilkington, Melanie published an article.SDS of cas: 75449-26-2 The title of the article was Exploring the Coordination Chemistry of 3,3′-Di(picolinamoyl)-2,2′-bipyridine: One Ligand, Multiple Nuclearities. And the article contained the following:

The syntheses, structures, and magnetic properties of three new coordination complexes, tetranuclear [Zn2L3(OAc)(OMe)]2·3MeOH·H2O (3), trinuclear [Ni3(L3)3]·6H2O (4), and a 1-dimensional chain {[Cu2L3(OAc)2]2·H2O}n (6), of a polydentate, doubly deprotonated, disubstituted bipyridine ligand, 3,3′-bis(picolinamido)-2,2′-bipyridine, [L3]2-, are reported. The x-ray crystal structures demonstrate that the ditopic ligand provides a flexible N3 donor set for transition metal ions where each binding pocket shifts from fac to intermediate fac/mer to the mer isomer affording a Ni3 triangle, a Zn4 tetramer, and a 1-dimensional Cu(II) polymer, resp. This variation in coordination preference is rationalized with the aim of designing future ligands with controlled coordination modes. Magnetic susceptibility studies on 4 reveal it belongs to the rare family of ferromagnetically coupled [Ni3] clusters. In contrast, magnetic studies of the 1-dimensional chain 6 reveal weak antiferromagnetic interactions due to the poor orbital overlap of the singly occupied Cu(II) dx2-y2 orbitals with the 1-atom bridge that connects them along the Jahn-Teller distortion axis. The experimental process involved the reaction of [2,2′-Bipyridine]-3,3′-diamine(cas: 75449-26-2).SDS of cas: 75449-26-2

The Article related to transition metal bispicolinamidobipyridine multinuclear complex coordination polymer preparation, crystal structure transition metal bispicolinamidobipyridine multinuclear complex coordination polymer, magnetic property transition metal bispicolinamidobipyridine multinuclear complex coordination polymer and other aspects.SDS of cas: 75449-26-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sutton, Cara E. et al. published their research in Chemistry – A European Journal in 2012 |CAS: 75449-26-2

The Article related to preparation macrocyclic bipyridine tetraazacrown ligand copper chloro complex, solution speciation macrocyclic bipyridine tetraazacrown ligand copper chloro complex, allosterism copper complexation macrocyclic bipyridine tetraazacrown ligand, crystal structure copper chloro macrocyclic bipyridine tetraazacrown ligand complex and other aspects.Quality Control of [2,2′-Bipyridine]-3,3′-diamine

Sutton, Cara E.; Harding, Lindsay P.; Hardie, Michaele; Riis-Johannessen, Thomas; Rice, Craig R. published an article in 2012, the title of the article was Allosteric Effects in a Ditopic Ligand Containing Bipyridine and Tetra-aza-crown Donor Units.Quality Control of [2,2′-Bipyridine]-3,3′-diamine And the article contains the following content:

The authors report the synthesis and coordination properties of a macrocyclic ligand containing bipyridine and tetraazacrown N-donor units. Both sites complex Cu(II), but the donor mode of tetraazacrown unit is controlled by the binding state of the bipyridine unit. An allosteric effect, characterized by neg. cooperative binding of a second Cu(II), is assigned to the tetraazacrown being able to coordinate through only three of its N-donors when the bipyridine site is occupied. The experimental process involved the reaction of [2,2′-Bipyridine]-3,3′-diamine(cas: 75449-26-2).Quality Control of [2,2′-Bipyridine]-3,3′-diamine

The Article related to preparation macrocyclic bipyridine tetraazacrown ligand copper chloro complex, solution speciation macrocyclic bipyridine tetraazacrown ligand copper chloro complex, allosterism copper complexation macrocyclic bipyridine tetraazacrown ligand, crystal structure copper chloro macrocyclic bipyridine tetraazacrown ligand complex and other aspects.Quality Control of [2,2′-Bipyridine]-3,3′-diamine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Maronna, Astrid et al. published their research in Chemistry – A European Journal in 2013 |CAS: 75449-26-2

The Article related to bisguanidine biphenyl binaphthyl bipyridyl backbone protonation proton sponge, crystal structure protonated biaryl bisguanidine group 10 metal complex, dft optimized geometry protonated biaryl bisguanidine, fluorescence bipyridyl bisguanidine, heck catalyst palladium bipyridyl bisguanidine allyl complex, spin density nickel biaryl bisguanidine and other aspects.SDS of cas: 75449-26-2

Maronna, Astrid; Huebner, Olaf; Enders, Markus; Kaifer, Elisabeth; Himmel, Hans-Joerg published an article in 2013, the title of the article was Bisguanidines with Biphenyl, Binaphthyl, and Bipyridyl Cores: Proton-Sponge Properties and Coordination Chemistry.SDS of cas: 75449-26-2 And the article contains the following content:

Herein, the authors report on the synthesis, protonation, and coordination chem. of chelating guanidine ligands with biphenyl, binaphthyl, and bipyridyl backbones. The ligands are proton sponges, and this protonation was studied exptl. and by using quantum-chem. calculations Group 10 metal (Ni, Pd, and Pt) complexes with different metal/ligand ratios were synthesized. In the case of the bipyridyl systems, coordination occurs exclusively at the pyridine N atoms, as opposed to protonation. The spin-d. distribution and the magnetism were evaluated for paramagnetic NiII complexes with the aid of paramagnetic NMR spectroscopic studies in alliance with quantum-chem. calculations and magnetic (SQUID) measurements. Through direct delocalization from the singly occupied MOs (SOMOs), a significant amount of spin d. is placed on the guanidinyl groups, and spin polarization also transports spin d. onto the aromatic backbone. The experimental process involved the reaction of [2,2′-Bipyridine]-3,3′-diamine(cas: 75449-26-2).SDS of cas: 75449-26-2

The Article related to bisguanidine biphenyl binaphthyl bipyridyl backbone protonation proton sponge, crystal structure protonated biaryl bisguanidine group 10 metal complex, dft optimized geometry protonated biaryl bisguanidine, fluorescence bipyridyl bisguanidine, heck catalyst palladium bipyridyl bisguanidine allyl complex, spin density nickel biaryl bisguanidine and other aspects.SDS of cas: 75449-26-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Wang, Jian et al. published their research in Chemical Communications (Cambridge, United Kingdom) in 2007 |CAS: 75449-26-2

The Article related to aminobipyridine pyridylpyrimidine derivative preparation structure, crystal structure aminobipyridine pyridylpyrimidine cobalt quaterpyridine derivative complex, cobalt quaterpyridine derivative complex preparation structure, pyridinecarbaldehyde aminobipyridine schiff preparation rearrangement cobalt catalyzed mechanism and other aspects.Computed Properties of 75449-26-2

On September 21, 2007, Wang, Jian; Onions, Stuart; Pilkington, Melanie; Stoeckli-Evans, Helen; Halfpenny, Joan C.; Wallis, John D. published an article.Computed Properties of 75449-26-2 The title of the article was Metal catalyzed rearrangement of a 2,2′-bipyridine Schiff-base ligand to a quaterpyridine-type complex. And the article contained the following:

A Co(II) quaterpyridine-type complex, [Co(L2)(H2O)(CH3CN)](ClO4)2 (L2 = I), has been prepared via a one-pot transformation of a 2,2′-bipyridine Schiff base ligand (II) in the presence of a Lewis acidic metal salt. The mol. structure of the cobalt complex has been determined using X-ray crystallog. The experimental process involved the reaction of [2,2′-Bipyridine]-3,3′-diamine(cas: 75449-26-2).Computed Properties of 75449-26-2

The Article related to aminobipyridine pyridylpyrimidine derivative preparation structure, crystal structure aminobipyridine pyridylpyrimidine cobalt quaterpyridine derivative complex, cobalt quaterpyridine derivative complex preparation structure, pyridinecarbaldehyde aminobipyridine schiff preparation rearrangement cobalt catalyzed mechanism and other aspects.Computed Properties of 75449-26-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Wang, Jian et al. published their research in Inorganic Chemistry in 2007 |CAS: 75449-26-2

The Article related to copper bipyridinepyridinecarboxamide preparation structure magnetic exchange, crystal structure copper bipyridinepyridinecarboxamide fluoroacac chloro dinuclear, exchange ferromagnetic antiferromagnetic copper bipyridinepyridinecarboxamide and other aspects.HPLC of Formula: 75449-26-2

On October 15, 2007, Wang, Jian; Djukic, Brandon; Cao, Jingyi; Alberola, Antonio; Razavi, Fereidoon S.; Pilkington, Melanie published an article.HPLC of Formula: 75449-26-2 The title of the article was A novel bis tridentate bipyridine carboxamide ligand and its complexation to copper(II): synthesis, structure, and magnetism. And the article contained the following:

A new bis tridentate ligand 2,2′-bipyridine-3,3′-[2-pyridinecarboxamide] H2L1 which can bind transition metal ions was synthesized via the condensation of 3,3′-diamino-2,2′-bipyridine together with 2-pyridine carbonyl chloride. Two Cu(II) coordination compounds were prepared and characterized: [Cu2(L1)(hfac)2].3MeCN.H2O (1) and [Cu2(L1)Cl2].MeCN (2). The single-crystal x-ray structures reveal that complex 1 crystallizes in the triclinic space group P1̅, with a 12.7185(6), b 17.3792(9), c 19.4696(8) Å, α 110.827(2), β 99.890(3), γ 97.966(3)°, Z = 4, R = 0.0321 and Rw = 0.0826. Complex 2 crystallizes in the monoclinic space group P21/n with a 12.8622(12), b 9.6100(10), c 19.897(2) Å, β 102.027(3)°, Z = 4, R = 0.0409 and Rw = 0.1005. In both complexes the ligand is in the dianionic form and coordinates the divalent CuII ions via one amido and two pyridine N donor atoms. In 1, the coordination geometry around both CuII ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hexafluoroacetylacetonate counterions. In 2 both CuII ions adopt a (4 + 1) distorted square pyramidal geometry. One Cu forms a longer apical bond to an adjacent carbonyl O atom, whereas the second Cu is chelated to a neighboring Cu-Cl chloride ion to afford a μ-Cl-bridged dimerized [Cu2(L1)Cl2]2 complex. The magnetic susceptibility data for 1 (2 -270 K), reveal the occurrence of weak antiferromagnetic interactions between the CuII ions. In contrast, variable-temperature magnetic susceptibility measurements for 2 reveal more complex magnetic properties, with the presence of a weak antiferromagnetic exchange (J = -10.1 K) between the Cu ions in each dinuclear Cu complex and a stronger ferromagnetic exchange interaction (J = 32.9 K) between the CuII ions of the Cu(μ-Cl)2Cu dimeric bridging units. The experimental process involved the reaction of [2,2′-Bipyridine]-3,3′-diamine(cas: 75449-26-2).HPLC of Formula: 75449-26-2

The Article related to copper bipyridinepyridinecarboxamide preparation structure magnetic exchange, crystal structure copper bipyridinepyridinecarboxamide fluoroacac chloro dinuclear, exchange ferromagnetic antiferromagnetic copper bipyridinepyridinecarboxamide and other aspects.HPLC of Formula: 75449-26-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

van Herrikhuyzen, Jeroen et al. published their research in Organic & Biomolecular Chemistry in 2006 |CAS: 75449-26-2

The Article related to oligophenylenevinylene nonracemic preparation uv visible spectra self assembly, aggregation pi stacking hydrogen bonding interaction nonracemic oligophenylenevinylene, hydrogen bonding pi interaction self assembly sym oligophenylenevinylene disk and other aspects.Quality Control of [2,2′-Bipyridine]-3,3′-diamine

On April 21, 2006, van Herrikhuyzen, Jeroen; Jonkheijm, Pascal; Schenning, Albertus P. H. J.; Meijer, E. W. published an article.Quality Control of [2,2′-Bipyridine]-3,3′-diamine The title of the article was The influence of hydrogen bonding and π-π stacking interactions on the self-assembly properties of C3-symmetrical oligo(p-phenylenevinylene) discs. And the article contained the following:

Three nonracemic C3-sym. oligophenylenevinylenes (OPV) are prepared and characterized; the UV/visible and IR spectra of the products in solution are determined and used to characterize the structures formed by self-assembly of the OPV. OPVs with triaminobenzene and benzenetricarboxamide cores show two-step transitions from helical stacks to molecularly dissolved species; the orientation of the amide relative to the core determines the stabilities and helicities of fibers in solution and the lengths of fibrils formed at surfaces. An OPV with a tris(2,2′-bipyridin-3-yl)benzenetricarboxamide core forms aggregates that show little chiral ordering but which remain present over a large temperature range; at surfaces, completely disordered structures exist as a result of competing types of π-π stacking interactions that differ in strength and orientation. The design of functional self-assembled architectures based on hydrogen bonding and π-π stacking interactions requires careful balancing of the topologies, directionalities and strengths of secondary interactions. The experimental process involved the reaction of [2,2′-Bipyridine]-3,3′-diamine(cas: 75449-26-2).Quality Control of [2,2′-Bipyridine]-3,3′-diamine

The Article related to oligophenylenevinylene nonracemic preparation uv visible spectra self assembly, aggregation pi stacking hydrogen bonding interaction nonracemic oligophenylenevinylene, hydrogen bonding pi interaction self assembly sym oligophenylenevinylene disk and other aspects.Quality Control of [2,2′-Bipyridine]-3,3′-diamine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Karges, Johannes et al. published their research in Angewandte Chemie, International Edition in 2021 |CAS: 75449-26-2

The Article related to rhenium tricarbonyl complex coordinate inhibitor main protease sars cov2, synthesis crystal structure rhenium tricarbonyl complex protease inhibitor 3clpro, sars-cov-2, antiviral agents, bioinorganic chemistry, medicinal inorganic chemistry, protease inhibitor and other aspects.Reference of [2,2′-Bipyridine]-3,3′-diamine

On May 10, 2021, Karges, Johannes; Kalaj, Mark; Gembicky, Milan; Cohen, Seth M. published an article.Reference of [2,2′-Bipyridine]-3,3′-diamine The title of the article was ReI tricarbonyl complexes as coordinate covalent inhibitors for the SARS-CoV-2 main cysteine protease. And the article contained the following:

Since its outbreak, the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has impacted the quality of life and cost hundreds-of-thousands of lives worldwide. Based on its global spread and mortality, there is an urgent need for novel treatments which can combat this disease. To date, the 3-chymotrypsin-like protease (3CLpro), which is also known as the main protease, is considered among the most important pharmacol. targets. The vast majority of investigated 3CLpro inhibitors are organic, non-covalent binders. Herein, the use of inorganic, coordinate covalent binders is proposed that can attenuate the activity of the protease. ReI tricarbonyl complexes were identified that demonstrate coordinate covalent enzymic inhibition of 3CLpro. Preliminary studies indicate the selective inhibition of 3CLpro over several human proteases. This study presents the first example of metal complexes as inhibitors for the 3CLpro cysteine protease. The experimental process involved the reaction of [2,2′-Bipyridine]-3,3′-diamine(cas: 75449-26-2).Reference of [2,2′-Bipyridine]-3,3′-diamine

The Article related to rhenium tricarbonyl complex coordinate inhibitor main protease sars cov2, synthesis crystal structure rhenium tricarbonyl complex protease inhibitor 3clpro, sars-cov-2, antiviral agents, bioinorganic chemistry, medicinal inorganic chemistry, protease inhibitor and other aspects.Reference of [2,2′-Bipyridine]-3,3′-diamine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Mondal, Dipanjan et al. published their research in Dalton Transactions in 2022 |CAS: 75449-26-2

The Article related to boron bipyridinylbisphosphinylchalcogenide complex preparation frontier mol orbital fluorescence lifetime, fluorescence oled redox potential boron bipyridinylbisphosphinylchalcogenide complex, crystal structure boron bipyridinylbisphosphinylchalcogenide complex and other aspects.Product Details of 75449-26-2

Mondal, Dipanjan; Sardar, Gopa; Kabra, Dinesh; Balakrishna, Maravanji S. published an article in 2022, the title of the article was 2,2′-Bipyridine derived doubly B- N fused bisphosphine-chalcogenides, [C5H3N(BF2){NCH2P(E)Ph2}]2 (E = O, S, Se): tuning of structural features and photophysical studies.Product Details of 75449-26-2 And the article contains the following content:

2,2′-Bipyridine based bisphosphine [C5H3N{N(H)CH2PPh2}]2 (1) and its bischalcogenide derivatives [C5H3N{N(H)CH2P(E)Ph2}]2 (2, E = O; 3, E = S; 4, E = Se) were synthesized, and further reacted with BF3·Et2O/Et3N to form doubly B-N fused compounds [C5H3N(BF2){NCH2P(E)Ph2}]2 (5, E = O; 6, E = S; 7, E = Se) in excellent yields. The influence of the P=E bonds on the electronic properties of the doubly B-N fused systems and their structural features were investigated in detail, supported by extensive exptl. and computational studies. Compound 6 exhibited a very high quantum yield of ϕ = 0.56 in CH2Cl2, whereas compound 7 showed a least quantum yield of ϕ = 0.003 in acetonitrile. D. functional theory (DFT) calculations demonstrated that the LUMO/HOMO of compounds 5-7 mostly delocalized over the entire π-conjugated frameworks. The involvement of PE bonds in the HOMO energy level of these compounds follows the order: PO < PS < PSe. Time-correlated single photon counting (TCSPC) experiments of compounds 5-7 revealed the singlet lifetime of 4.26 ns for 6, followed by 4.03 ns for 5 and a lowest value of 2.18 ns (τ1) and 0.47 ns (τ2) with a double decay profile for 7. The authors' findings provide important strategies for the design of highly effective B-N bridged compounds and tuning their photophys. properties by oxidizing phosphorus with different chalcogens. Compounds 5 and 6 have been employed as green emitters (λem = 515 nm) in fluorescent organic light-emitting diodes (OLEDs). For compound 5, doped into the poly(9-vinylcarbazole) (PVK) matrix with 5 wt% doping concentration, nearly 90 Cd m-2 luminance with 0.022% external quantum efficiency (EQE) was achieved. The best performance was observed for compound 6 doped into PVK by 1 wt% having a maximum luminance of 350 Cd m-2 and a similar EQE value. The experimental process involved the reaction of [2,2'-Bipyridine]-3,3'-diamine(cas: 75449-26-2).Product Details of 75449-26-2

The Article related to boron bipyridinylbisphosphinylchalcogenide complex preparation frontier mol orbital fluorescence lifetime, fluorescence oled redox potential boron bipyridinylbisphosphinylchalcogenide complex, crystal structure boron bipyridinylbisphosphinylchalcogenide complex and other aspects.Product Details of 75449-26-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Wang, Jian et al. published their research in CrystEngComm in 2015 |CAS: 75449-26-2

The Article related to crystal structure bipyridylbisimine schiff base preparation, bipyridylbisimine schiff base hydrolysis oxidation nucleophilic addition reaction product, zinc copper bipyridylbisimine schiff base complex crystal structure preparation, copper bipyridylbisimine schiff base magnetic property and other aspects.Synthetic Route of 75449-26-2

Wang, Jian; Hayward, John J.; Gumbau-Brisa, Roger; Wallis, John D.; Stoeckli-Evans, Helen; Pilkington, Melanie published an article in 2015, the title of the article was Probing the reactivity of a 2,2′-bipyridyl-3,3′-bis-imine ligand by X-ray crystallography.Synthetic Route of 75449-26-2 And the article contains the following content:

The reactivity of a Schiff-base bis-imine ligand 3 (N3,N3-bis(2-pyridinylmethylene)[2,2′-bipyridine]3,3′-diamine) is probed by x-ray diffraction studies. Its susceptibility to hydrolysis, oxidation and nucleophilic addition reactions of 3 is demonstrated by the isolation of the methanol adduct 4 and two diazepine heterocycles 5 and 6. This reactivity is also reflected in the mol. structures of two coordination complexes isolated by the reaction of 3 with M(hfac)2 salts, to afford [Cu(5)(hfac)(tfa)] (8) and [Zn(6)(hfac)2] (9), where Hhfac = hexafluoroacetylacetone and tfa = trifluoroacetic acid. The experimental process involved the reaction of [2,2′-Bipyridine]-3,3′-diamine(cas: 75449-26-2).Synthetic Route of 75449-26-2

The Article related to crystal structure bipyridylbisimine schiff base preparation, bipyridylbisimine schiff base hydrolysis oxidation nucleophilic addition reaction product, zinc copper bipyridylbisimine schiff base complex crystal structure preparation, copper bipyridylbisimine schiff base magnetic property and other aspects.Synthetic Route of 75449-26-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem