Wang, Xie team published research in Organic Letters in 2019 | 766-11-0

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Product Details of C5H3BrFN

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Product Details of C5H3BrFN.

Wang, Xie;Davies, Geraint H. M.;Koschitzky, Adriel;Wisniewski, Steven R.;Kelly, Christopher B.;Molander, Gary A. research published 《 Photoredox Catalysis Enables Access to N-Functionalized 2,1-Borazaronaphthalenes》, the research content is summarized as follows. The synthesis and use of a class of 2,1-borazaronaphthyltrifluoroborate reagents that provide a general solution to the challenge of N-functionalization of the 2,1-borazaronaphthalene core is described. By adorning the N of this core with a trifluoroboratomethyl unit, a suite of odd-electron processes can be executed, installing motifs that would otherwise be inaccessible using a two-electron approach. This process enables rapid annulation, furnishing a heretofore unknown polycyclic B-N species.

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Product Details of C5H3BrFN

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Thompson, Andrew M. team published research in Bioorganic & Medicinal Chemistry Letters in 2015 | 766-11-0

Category: pyridine-derivatives, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Category: pyridine-derivatives.

Thompson, Andrew M.;Blaser, Adrian;Palmer, Brian D.;Franzblau, Scott G.;Wan, Baojie;Wang, Yuehong;Ma, Zhenkun;Denny, William A. research published 《 Biarylmethoxy 2-nitroimidazooxazine antituberculosis agents: Effects of proximal ring substitution and linker reversal on metabolism and efficacy》, the research content is summarized as follows. Certain biaryl analogs of antitubercular drug PA-824 displayed enhanced in vivo efficacies yet retained some susceptibility towards oxidative metabolism; therefore, two new strategies were explored to address this. Ortho-substitution of the proximal aryl ring with larger electron-withdrawing substituents maintained or improved compound stability but reduced aerobic potency; however, fluoro and cyano were well tolerated. In vivo, only 2′- or 3′-fluoro mono-substitution preserved high efficacy against acute infection, although one example was twofold more effective than delamanid against chronic infection. Reversal of the 6-oxymethylene linkage also permitted high potency and improved stability towards human liver microsomes, albeit, in vivo results were inferior. These novel findings provide further insight into the preferred structural features for lead candidates in this important drug class.

Category: pyridine-derivatives, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Thompson, Andrew M. team published research in Journal of Medicinal Chemistry in 2016 | 766-11-0

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Recommanded Product: 5-Bromo-2-fluoropyridine

The critical parameters of pyridine are pressure 6.70 MPa, temperature 620 K and volume 229 cm3·mol−1. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. In the temperature range 340–426 °C its vapor pressure p can be described with the Antoine equation.. Recommanded Product: 5-Bromo-2-fluoropyridine.

Thompson, Andrew M.;O’Connor, Patrick D.;Blaser, Adrian;Yardley, Vanessa;Maes, Louis;Gupta, Suman;Launay, Delphine;Martin, Denis;Franzblau, Scott G.;Wan, Baojie;Wang, Yuehong;Ma, Zhenkun;Denny, William A. research published 《 Repositioning Antitubercular 6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazoles for Neglected Tropical Diseases: Structure-Activity Studies on a Preclinical Candidate for Visceral Leishmaniasis》, the research content is summarized as follows. 6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazole derivatives were initially studied for tuberculosis within a backup program for the clin. trial agent pretomanid (PA-824). Phenotypic screening of representative examples against kinetoplastid diseases unexpectedly led to the identification of DNDI-VL-2098 as a potential first-in-class drug candidate for visceral leishmaniasis (VL). Addnl. work was then conducted to delineate its essential structural features, aiming to improve solubility and safety without compromising activity against VL. While the 4-nitroimidazole portion was specifically required, several modifications to the aryloxy side chain were well-tolerated e.g., exchange of the linking oxygen for nitrogen (or piperazine), biaryl extension, and replacement of Ph rings by pyridine. Several less lipophilic analogs displayed improved aqueous solubility, particularly at low pH, although stability toward liver microsomes was highly variable. Upon evaluation in a mouse model of acute Leishmania donovani infection,phenylpyridine derivative I stood out, providing efficacy surpassing that of the original preclin. lead.

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Recommanded Product: 5-Bromo-2-fluoropyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Thompson, Andrew M. team published research in Journal of Medicinal Chemistry in 2017 | 766-11-0

Category: pyridine-derivatives, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Pyridine is diamagnetic and has a diamagnetic susceptibility of −48.7 × 10−6 cm3·mol−1.The molecular electric dipole moment is 2.2 debyes. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. TThe standard enthalpy of formation is 100.2 kJ·mol−1 in the liquid phase and 140.4 kJ·mol−1 in the gas phase. Category: pyridine-derivatives.

Thompson, Andrew M.;O’Connor, Patrick D.;Marshall, Andrew J.;Yardley, Vanessa;Maes, Louis;Gupta, Suman;Launay, Delphine;Braillard, Stephanie;Chatelain, Eric;Franzblau, Scott G.;Wan, Baojie;Wang, Yuehong;Ma, Zhenkun;Cooper, Christopher B.;Denny, William A. research published 《 7-Substituted 2-Nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazines: Novel Antitubercular Agents Lead to a New Preclinical Candidate for Visceral Leishmaniasis》, the research content is summarized as follows. Within a backup program for the clin. investigational agent pretomanid (PA-824), scaffold hopping from delamanid inspired the discovery of a novel class of potent antitubercular agents that unexpectedly possessed notable utility against the kinetoplastid disease visceral leishmaniasis (VL). Following the identification of delamanid analog DNDI-VL-2098 as a VL preclin. candidate, this structurally related 7-substituted 2-nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazine class was further explored, seeking efficacious backup compounds with improved solubility and safety. Commencing with a biphenyl lead, bioisosteres formed by replacing one Ph by pyridine or pyrimidine showed improved solubility and potency, whereas more hydrophilic side chains reduced VL activity. In a Leishmania donovani mouse model, two racemic phenylpyridines (71 and 93) were superior, with the former providing >99% inhibition at 12.5 mg/kg (b.i.d., orally) in the Leishmania infantum hamster model. Overall, the 7R enantiomer of 71 (79) displayed more optimal efficacy, pharmacokinetics, and safety, leading to its selection as the preferred development candidate.

Category: pyridine-derivatives, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Thompson, Andrew M. team published research in Journal of Medicinal Chemistry in 2018 | 766-11-0

Formula: C5H3BrFN, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Formula: C5H3BrFN.

Thompson, Andrew M.;O’Connor, Patrick D.;Marshall, Andrew J.;Blaser, Adrian;Yardley, Vanessa;Maes, Louis;Gupta, Suman;Launay, Delphine;Braillard, Stephanie;Chatelain, Eric;Wan, Baojie;Franzblau, Scott G.;Ma, Zhenkun;Cooper, Christopher B.;Denny, William A. research published 《 Development of (6R)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (DNDI-8219): A New Lead for Visceral Leishmaniasis》, the research content is summarized as follows. Discovery of the potent antileishmanial effects of antitubercular 6-nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazoles and 7-substituted 2-nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazines stimulated the examination of further scaffolds (e.g., 2-nitro-5,6,7,8-tetrahydroimidazo[2,1-b][1,3]oxazepines), but the results for these seemed less attractive. Following the screening of a 900-compound pretomanid analog library, several hits with more suitable potency, solubility, and microsomal stability were identified, and the superior efficacy of newly synthesized 6R enantiomers with phenylpyridine-based side chains was established through head-to-head assessments in a Leishmania donovani mouse model. Two such leads (R-84 and R-89) displayed promising activity in the more stringent Leishmania infantum hamster model but were unexpectedly found to be potent inhibitors of hERG. An extensive structure-activity relationship investigation pinpointed two compounds (R-6 and pyridine R-136) with better solubility and pharmacokinetic properties that also provided excellent oral efficacy in the same hamster model (>97% parasite clearance at 25 mg/kg, twice daily) and exhibited minimal hERG inhibition. Addnl. profiling earmarked R-6 as the favored backup development candidate.

Formula: C5H3BrFN, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sun, Chaofan team published research in Inorganic Chemistry in 2022 | 766-11-0

Application of C5H3BrFN, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Pyridine is diamagnetic and has a diamagnetic susceptibility of −48.7 × 10−6 cm3·mol−1.The molecular electric dipole moment is 2.2 debyes. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. TThe standard enthalpy of formation is 100.2 kJ·mol−1 in the liquid phase and 140.4 kJ·mol−1 in the gas phase. Application of C5H3BrFN.

Sun, Chaofan;Lu, Ju-You;Lu, Jian research published 《 Pd-Catalyzed Selective B(6)-H Phosphorization of nido-Carboranes via Cascade Deboronation/B-H Activation from closo-Carboranes》, the research content is summarized as follows. Efficient Pd-catalyzed regioselective B(6)-H phosphorization of nido-carboranes via cascade deboronation/B-H activation of readily available C-substituted o-carboranes with various phosphines using 3-methylpyridine or isoquinoline as a directing group in combination with pyridine ligands was developed, affording unprecedented B(6)-phosphinated nido-carborane derivatives with high selectivity in a simple 1-pot process.

Application of C5H3BrFN, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sun, Deli team published research in Chemical Science in 2021 | 766-11-0

Name: 5-Bromo-2-fluoropyridine, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Pyridine has a conjugated system of six π electrons that are delocalized over the ring. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. The molecule is planar and, thus, follows the Hückel criteria for aromatic systems. Name: 5-Bromo-2-fluoropyridine.

Sun, Deli;Ma, Guobin;Zhao, Xinluo;Lei, Chuanhu;Gong, Hegui research published 《 Nickel-catalyzed asymmetric reductive arylation of α-chlorosulfones with aryl halides》, the research content is summarized as follows. An asym. Ni-catalyzed reductive cross-coupling of aryl/heteroaryl halides with racemic α-chlorosulfones to afford enantioenriched sulfones I [R1 = Me, Ph, 2-thienyl, etc.; R2 = Me, n-Bu, Bn, etc.; Ar = 4-MeOOCC6H4, 2-methoxy-pyridin-5-yl, 2-naphthyl, etc.] was reported. The reaction tolerated a variety of functional groups under mild reaction conditions, which complements current methods. The utility of this work was demonstrated by facile late-stage functionalization of com. drugs.

Name: 5-Bromo-2-fluoropyridine, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sun, Yunlong team published research in ChemistrySelect in 2020 | 766-11-0

Formula: C5H3BrFN, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Pyridine is colorless, but older or impure samples can appear yellow. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. Formula: C5H3BrFN.

Sun, Yunlong;Li, Tian research published 《 Fabrication and Application of Graphene Supported Diimine-Palladium Complex Catalyst for Organic Synthesis》, the research content is summarized as follows. In this paper, a diimine palladium complex with suitable steric hindrance of iso-Pr groups and electron supply provided excellent protection for palladium active centers was synthesized and anchored on graphene oxide (GO) to obtain a reusable heterogeneous catalyst (Pd-DI@GO). The XPS results confirmed the effective loading of palladium and the interaction between palladium and ligand. The ICP-AES data verified the Pd content of catalyst was 5.04 wt% and confirmed extremely small amount Pd leaching in Suzuki reaction (<1 ppm). The Pd-DI@GO could catalyze Suzuki reaction and C-H direct arylation reaction of aryl bromides and arylboronic acids/heterocycles to afford biaryls R-R1 [R = Ph, 4-MeC6H4, 2-MeOC6H4, etc.; R1 = Ph, 1-naphthyl, 2-pyridyl, etc] and R2-R3 [R2 = Ph, 4-ClC6H4, 4-tBuC6H4, etc. R3 = 2,4-(Me)2-5-thiazolyl, 2-Me-5-thiazolyl, 4-Me-5-thiazolyl] with high yields. Notably, the Pd-DI@GO could be recycled after Suzuki reaction via filtration or centrifugation easily, presented a yield above 90% for the 4th run.

Formula: C5H3BrFN, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sutherland, Hamish S. team published research in Bioorganic & Medicinal Chemistry in 2019 | 766-11-0

Related Products of 766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

At 25 °C pyridine has a viscosity of 0.88 mPa/s and thermal conductivity of 0.166 W·m−1·K−1. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. The enthalpy of vaporization is 35.09 kJ·mol−1 at the boiling point and normal pressure.The enthalpy of fusion is 8.28 kJ·mol−1 at the melting point. Related Products of 766-11-0.

Sutherland, Hamish S.;Tong, Amy S. T.;Choi, Peter J.;Blaser, Adrian;Conole, Daniel;Franzblau, Scott G.;Lotlikar, Manisha U.;Cooper, Christopher B.;Upton, Anna M.;Denny, William A.;Palmer, Brian D. research published 《 3,5-Dialkoxypyridine analogues of bedaquiline are potent antituberculosis agents with minimal inhibition of the hERG channel》, the research content is summarized as follows. Bedaquiline is a new drug of the diarylquinoline class that has proven to be clin. effective against drug-resistant tuberculosis, but has a cardiac liability (prolongation of the QT interval) due to its potent inhibition of the cardiac potassium channel protein hERG. Bedaquiline is highly lipophilic and has an extremely long terminal half-life, so has the potential for more-than-desired accumulation in tissues during the relatively long treatment durations required to cure TB. The present work is part of a program that seeks to identify a diarylquinoline that is as potent as bedaquiline against Mycobacterium tuberculosis, with lower lipophilicity, higher clearance, and lower risk for QT prolongation. Previous work led to the identification of compounds with greatly-reduced lipophilicity compounds that retain good anti-tubercular activity in vitro and in mouse models of TB, but has not addressed the hERG blockade. We now present compounds where the C-unit naphthalene is replaced by a 3,5-dialkoxy-4-pyridyl, demonstrate more potent in vitro and in vivo anti-tubercular activity, with greatly attenuated hERG blockade. Two examples of this series are in preclin. development.

Related Products of 766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Tang, Yu team published research in Journal of the American Chemical Society in 2021 | 766-11-0

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Formula: C5H3BrFN

Pyridine is colorless, but older or impure samples can appear yellow. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. Formula: C5H3BrFN.

Tang, Yu;Miller, Scott J. research published 《 Catalytic Enantioselective Synthesis of Pyridyl Sulfoximines》, the research content is summarized as follows. The synthesis of chiral sulfoximines, e.g., I, through the desymmetrizing N-oxidation of pyridyl sulfoximines, e.g., II, using an aspartic-acid-containing peptide catalyst III (R = Ts, Boc) was reported. Various mono- and bis-pyridyl sulfoximine oxides, e.g., I and IV, are obtained with up to 99:1 er. The directing group introduced on the substrate highly enhances the enantioinduction and could be easily removed to give the free N-H sulfoximines V. Addnl., peptides with Me ester and the Me amide C-terminal protecting group give the opposite enantiomers of the product. A binding model is proposed to explain this phenomenon.

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Formula: C5H3BrFN

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem