Brief introduction of 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine

At the same time, in my other blogs, there are other synthetic methods of this type of compound,823221-95-0, 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine, and friends who are interested can also refer to it.

Synthetic Route of 823221-95-0, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 823221-95-0, name is 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine. A new synthetic method of this compound is introduced below.

Step 2: To a solution of 5-chloro-4-iodo-2-(trifluoromethyl)pyridine (18.2 g, 59.2 mmol) in diethylether (200 mL), at -78 C in a 1L 3 neck RBF, was added n-butyl lithium (1.6 M in hexane, 44.5 mL, 71.1 mmol). The resulting solution was stirred at that temperature for 10 minutes and ethyl-N-Boc-(S)-pyroglutamate (16.75 g, 65.2 mmol) in diethylether (130 mL) was added slowly, and the resulting solution was stirred at that temperature for 1 h. The reaction was stopped by the addition of saturated NH4C1 solution (150 mL) and extracted with EtOAc (2 x 250 mL).The organic layer was washed with water (2 x 150 mL), dried over anhydrous Na2S04 and concentrated to yield ethyl (S)-2-((tert-butoxycarbonyl)amino)-5-(5-chloro-2- (trifluoromethyl)pyridin-4-yl)-5-oxopentanoate which was carried forward to the next step without further purification.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,823221-95-0, 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine, and friends who are interested can also refer to it.

Reference:
Patent; MERCK SHARP & DOHME CORP.; LIU, Jian; SHAO, Pengcheng Patrick; KRIKORIAN, Arto, D.; VACHAL, Petr; WO2015/17302; (2015); A2;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Brief introduction of 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine

At the same time, in my other blogs, there are other synthetic methods of this type of compound,823221-95-0, 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine, and friends who are interested can also refer to it.

Synthetic Route of 823221-95-0, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 823221-95-0, name is 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine. A new synthetic method of this compound is introduced below.

Step 2: To a solution of 5-chloro-4-iodo-2-(trifluoromethyl)pyridine (18.2 g, 59.2 mmol) in diethylether (200 mL), at -78 C in a 1L 3 neck RBF, was added n-butyl lithium (1.6 M in hexane, 44.5 mL, 71.1 mmol). The resulting solution was stirred at that temperature for 10 minutes and ethyl-N-Boc-(S)-pyroglutamate (16.75 g, 65.2 mmol) in diethylether (130 mL) was added slowly, and the resulting solution was stirred at that temperature for 1 h. The reaction was stopped by the addition of saturated NH4C1 solution (150 mL) and extracted with EtOAc (2 x 250 mL).The organic layer was washed with water (2 x 150 mL), dried over anhydrous Na2S04 and concentrated to yield ethyl (S)-2-((tert-butoxycarbonyl)amino)-5-(5-chloro-2- (trifluoromethyl)pyridin-4-yl)-5-oxopentanoate which was carried forward to the next step without further purification.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,823221-95-0, 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine, and friends who are interested can also refer to it.

Reference:
Patent; MERCK SHARP & DOHME CORP.; LIU, Jian; SHAO, Pengcheng Patrick; KRIKORIAN, Arto, D.; VACHAL, Petr; WO2015/17302; (2015); A2;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Simple exploration of 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine

According to the analysis of related databases, 823221-95-0, the application of this compound in the production field has become more and more popular.

Application of 823221-95-0, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 823221-95-0, name is 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine. This compound has unique chemical properties. The synthetic route is as follows.

To a solution of 5-Chloro-4-iodo-2-trifluoromethyl-pyridine (7.25 g, 23.6 mmol) in DMSO (70.0 mL) were added diethylmalonate (4.53 g, 28.3 mmol) and cesium carbonate (11.52 g, 35.3 mmol). The reaction mixture was stirred at 100C for 5 h. Reaction completion was confirmed by TLC. Upon cooling, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. Crude product was purified by flash column chromatography on silica gel eluting with 10-20% ethyl acetate/hexanes to yield diethyl 2-(5-Chloro-2-trifluoromethyl-pyridin-4-yl)-malonic acid diethyl ester 1. MS ESI/APCI calc’d. for C13H13CIF3NO4[M + H]+339.7, found 340.2.

According to the analysis of related databases, 823221-95-0, the application of this compound in the production field has become more and more popular.

Reference:
Patent; MERCK SHARP & DOHME CORP.; SHAO, Pengcheng Patrick; YE, Feng; VACHAL, Petr; WO2015/94932; (2015); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sources of common compounds: 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine

According to the analysis of related databases, 823221-95-0, the application of this compound in the production field has become more and more popular.

Synthetic Route of 823221-95-0, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 823221-95-0, name is 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine, molecular formula is C6H2ClF3IN, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Step D 3-chloro-2-iodo-6-(trifluoromethyl)pyridine Into a 100 mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 5-chloro-4-iodo-2-(trifluoromethyl)pyridine (as prepared in the previous step, 2 g, 6.51 mmol, 1.00 equiv) in tetrahydrofuran (20 mL). This was followed by the addition of LDA (730 mg, 6.82 mmol, 1.05 equiv, as a THF solution) dropwise with stirring at -78 C. The resulting solution was stirred for 2 h at -78 C. The reaction was then quenched by the addition of 5 mL of water and diluted with 100 mL DCM. The resulting solution was washed with 50 mL brine, dried (Na2SO4), and concentrated. The residue was purified by silica gel column with ethyl acetate/petroleum ether (1:10) eluent, yielding 3-chloro-2-iodo-6-(trifluoromethyl)pyridine as a yellow solid.

According to the analysis of related databases, 823221-95-0, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Zhang, Xuqing; Sui, Zhihua; Lanter, James C.; US2011/306592; (2011); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sources of common compounds: 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine

According to the analysis of related databases, 823221-95-0, the application of this compound in the production field has become more and more popular.

Synthetic Route of 823221-95-0, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 823221-95-0, name is 5-Chloro-4-iodo-2-(trifluoromethyl)pyridine, molecular formula is C6H2ClF3IN, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Step D 3-chloro-2-iodo-6-(trifluoromethyl)pyridine Into a 100 mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 5-chloro-4-iodo-2-(trifluoromethyl)pyridine (as prepared in the previous step, 2 g, 6.51 mmol, 1.00 equiv) in tetrahydrofuran (20 mL). This was followed by the addition of LDA (730 mg, 6.82 mmol, 1.05 equiv, as a THF solution) dropwise with stirring at -78 C. The resulting solution was stirred for 2 h at -78 C. The reaction was then quenched by the addition of 5 mL of water and diluted with 100 mL DCM. The resulting solution was washed with 50 mL brine, dried (Na2SO4), and concentrated. The residue was purified by silica gel column with ethyl acetate/petroleum ether (1:10) eluent, yielding 3-chloro-2-iodo-6-(trifluoromethyl)pyridine as a yellow solid.

According to the analysis of related databases, 823221-95-0, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Zhang, Xuqing; Sui, Zhihua; Lanter, James C.; US2011/306592; (2011); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem