New learning discoveries about 83766-88-5

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 83766-88-5, 2-(tert-Butoxy)pyridine.

Synthetic Route of 83766-88-5, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 83766-88-5, name is 2-(tert-Butoxy)pyridine. This compound has unique chemical properties. The synthetic route is as follows.

General procedure: Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 83766-88-5, 2-(tert-Butoxy)pyridine.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sources of common compounds: 2-(tert-Butoxy)pyridine

At the same time, in my other blogs, there are other synthetic methods of this type of compound,83766-88-5, 2-(tert-Butoxy)pyridine, and friends who are interested can also refer to it.

Adding a certain compound to certain chemical reactions, such as: 83766-88-5, 2-(tert-Butoxy)pyridine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Recommanded Product: 83766-88-5, blongs to pyridine-derivatives compound. Recommanded Product: 83766-88-5

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,83766-88-5, 2-(tert-Butoxy)pyridine, and friends who are interested can also refer to it.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New downstream synthetic route of 83766-88-5

According to the analysis of related databases, 83766-88-5, the application of this compound in the production field has become more and more popular.

Related Products of 83766-88-5, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 83766-88-5, name is 2-(tert-Butoxy)pyridine, molecular formula is C9H13NO, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

According to the analysis of related databases, 83766-88-5, the application of this compound in the production field has become more and more popular.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sources of common compounds: 2-(tert-Butoxy)pyridine

At the same time, in my other blogs, there are other synthetic methods of this type of compound,83766-88-5, 2-(tert-Butoxy)pyridine, and friends who are interested can also refer to it.

Adding a certain compound to certain chemical reactions, such as: 83766-88-5, 2-(tert-Butoxy)pyridine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Recommanded Product: 83766-88-5, blongs to pyridine-derivatives compound. Recommanded Product: 83766-88-5

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,83766-88-5, 2-(tert-Butoxy)pyridine, and friends who are interested can also refer to it.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New downstream synthetic route of 83766-88-5

According to the analysis of related databases, 83766-88-5, the application of this compound in the production field has become more and more popular.

Related Products of 83766-88-5, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 83766-88-5, name is 2-(tert-Butoxy)pyridine, molecular formula is C9H13NO, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

According to the analysis of related databases, 83766-88-5, the application of this compound in the production field has become more and more popular.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

A new synthetic route of 83766-88-5

At the same time, in my other blogs, there are other synthetic methods of this type of compound,83766-88-5, 2-(tert-Butoxy)pyridine, and friends who are interested can also refer to it.

With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.83766-88-5, name is 2-(tert-Butoxy)pyridine, molecular formula is C9H13NO, molecular weight is 151.21, as common compound, the synthetic route is as follows.Product Details of 83766-88-5

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,83766-88-5, 2-(tert-Butoxy)pyridine, and friends who are interested can also refer to it.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sources of common compounds: 83766-88-5

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,83766-88-5, its application will become more common.

Reference of 83766-88-5, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 83766-88-5, name is 2-(tert-Butoxy)pyridine. A new synthetic method of this compound is introduced below.

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,83766-88-5, its application will become more common.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Simple exploration of 83766-88-5

With the rapid development of chemical substances, we look forward to future research findings about 83766-88-5.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 83766-88-5, name is 2-(tert-Butoxy)pyridine. This compound has unique chemical properties. The synthetic route is as follows. Computed Properties of C9H13NO

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

With the rapid development of chemical substances, we look forward to future research findings about 83766-88-5.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New downstream synthetic route of 83766-88-5

At the same time, in my other blogs, there are other synthetic methods of this type of compound,83766-88-5, 2-(tert-Butoxy)pyridine, and friends who are interested can also refer to it.

Adding a certain compound to certain chemical reactions, such as: 83766-88-5, 2-(tert-Butoxy)pyridine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Computed Properties of C9H13NO, blongs to pyridine-derivatives compound. Computed Properties of C9H13NO

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,83766-88-5, 2-(tert-Butoxy)pyridine, and friends who are interested can also refer to it.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 83766-88-5

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 83766-88-5, 2-(tert-Butoxy)pyridine.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 83766-88-5, name is 2-(tert-Butoxy)pyridine. A new synthetic method of this compound is introduced below., Recommanded Product: 2-(tert-Butoxy)pyridine

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 83766-88-5, 2-(tert-Butoxy)pyridine.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem