A new synthetic route of 2-(tert-Butoxy)pyridine

According to the analysis of related databases, 83766-88-5, the application of this compound in the production field has become more and more popular.

Reference of 83766-88-5, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 83766-88-5, name is 2-(tert-Butoxy)pyridine, molecular formula is C9H13NO, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

According to the analysis of related databases, 83766-88-5, the application of this compound in the production field has become more and more popular.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The origin of a common compound about 83766-88-5

With the rapid development of chemical substances, we look forward to future research findings about 83766-88-5.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 83766-88-5, name is 2-(tert-Butoxy)pyridine. This compound has unique chemical properties. The synthetic route is as follows. Recommanded Product: 83766-88-5

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

With the rapid development of chemical substances, we look forward to future research findings about 83766-88-5.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extracurricular laboratory: Synthetic route of 83766-88-5

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 83766-88-5, 2-(tert-Butoxy)pyridine.

Related Products of 83766-88-5, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 83766-88-5, name is 2-(tert-Butoxy)pyridine. This compound has unique chemical properties. The synthetic route is as follows.

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 83766-88-5, 2-(tert-Butoxy)pyridine.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sources of common compounds: 2-(tert-Butoxy)pyridine

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 83766-88-5, 2-(tert-Butoxy)pyridine, other downstream synthetic routes, hurry up and to see.

Application of 83766-88-5, Adding some certain compound to certain chemical reactions, such as: 83766-88-5, name is 2-(tert-Butoxy)pyridine,molecular formula is C9H13NO, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 83766-88-5.

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 83766-88-5, 2-(tert-Butoxy)pyridine, other downstream synthetic routes, hurry up and to see.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New downstream synthetic route of 2-(tert-Butoxy)pyridine

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 83766-88-5, 2-(tert-Butoxy)pyridine.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 83766-88-5, name is 2-(tert-Butoxy)pyridine. This compound has unique chemical properties. The synthetic route is as follows. Application In Synthesis of 2-(tert-Butoxy)pyridine

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 83766-88-5, 2-(tert-Butoxy)pyridine.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Application of 2-(tert-Butoxy)pyridine

According to the analysis of related databases, 83766-88-5, the application of this compound in the production field has become more and more popular.

Synthetic Route of 83766-88-5, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 83766-88-5, name is 2-(tert-Butoxy)pyridine. This compound has unique chemical properties. The synthetic route is as follows.

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

According to the analysis of related databases, 83766-88-5, the application of this compound in the production field has become more and more popular.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem