Extended knowledge of 886365-06-6

The synthetic route of 886365-06-6 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 886365-06-6, name is Methyl 5-bromo-4-methylpicolinate, the common compound, a new synthetic route is introduced below. Formula: C8H8BrNO2

(2-Fluoro-4-methoxyphenyl)boronic acid (177 mg, 1.043 mmol), methyl 5-bromo-4- methylpyridine-2-carboxylate (200 mg, 0.869 mmol), 1,3 bis(di-tert-butylphosphino)ferrocene palladium dichloride (89 mg, 0.130 mmol), cesium carbonate (623 mg, 1.913 mmol) and THF (5 mL) were sealed in a microwave vessel and subject to microwave irradiation at 140 C for 20 min. The reaction crude was combined with the crude from an identical probe reaction (44.3 mg scale). Volatiles were removed under reduced pressure. The resulting pot residue was purified by preparative HPLC (reverse phase, Kromasil 100-5C18, 100×21.1 mm) eluting with acetonitrile/water + 0.1% TFA (30% to 100% organic in 10 min, then to 100% for 2 min, 20 mL/min). Related fractions were pooled and evaporated under reduced pressure to afford a dark solid. This solid was further purified by flash chromatography (Si02, Biotage SNAP Cartridge, silica gel, KP-Sil, 50 g cartridge). The column was eluted with an EtOAc hexanes mixture (0% to 100%). Related fractions were pooled and evaporated to afford a light yellow oil as the titled compound. LCMS calc. = 275.10; found = 276.11 (M+H)+.

The synthetic route of 886365-06-6 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; MERCK SHARP & DOHME CORP.; LU, Zhijian; CHEN, Yi-Heng; SMITH, Cameron; LI, Hong; THOMPSON, Christopher, F.; SWEIS, Ramzi; SINCLAIR, Peter; KALLASHI, Florida; HUNT, Julianne; ADAMSON, Samantha, E.; DONG, Guizhen; ONDEYKA, Debra, L.; QIAN, Xiaoxia; SUN, Wanying; VACHAL, Petr; ZHAO, Kake; WO2012/58187; (2012); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of Methyl 5-bromo-4-methylpicolinate

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 886365-06-6, Methyl 5-bromo-4-methylpicolinate.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 886365-06-6, name is Methyl 5-bromo-4-methylpicolinate. This compound has unique chemical properties. The synthetic route is as follows. COA of Formula: C8H8BrNO2

Into a vial was weighed methyl 5-bromo-4-methylpicolinate (1.00 g, 4.35 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)-dichloromethane complex (181 mg, 0.217 mmol), bis(pinacolato)diboron (1.21 g, 4.78 mmol), and potassium acetate (1.28 g, 13.0 mmol). Under nitrogen, anhydrous 1,4-dioxane (11 mL) was added and the vial was sealed. The reaction mixture was stirred at 100 C. for 18 h. After cooling to rt, the reaction mixture was concentrated and the residue purified by flash column chromatography (CH2Cl2/MeOH, 100:0-90:10) to afford 756 mg of crude aryl pinacolboranate intermediate (contaminated with pinacolborane by 1H NMR). Combining this intermediate (323 mg, ?1.17 mmol) with (+-)-(1S,2S)-N-(8-(bis(2,4-dimethoxybenzyl)amino)-6-chloro-2,7-naphthyridin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)cyclopropane-1-carboxamide (500 mg, 0.777 mmol), chloro(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II) (32.8 mg, 0.0389 mmol), 2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (18.9 mg, 0.0389 mmol), and potassium phosphate tribasic monohydrate (554 mg, 2.33 mmol) in a vial, tetrahydrofuran (3.9 mL) and water (0.7 mL) were added under nitrogen and the vial was sealed and stirred at 80 C. for 19 h. The reaction mixture still contained starting material and so an equal aliquot of catalyst, ligand and water, as well as potassium phosphate tribasic monohydrate (184 mg, 0.777 mmol) and crude aryl pinacolboranate (215 mg, ?0.77 mmol) were added and stirred at 80 C. for 3 days. The mixture was concentrated to dryness and residue purified by flash column chromatography (CH2Cl2/MeOH, 100:0-90:10). The crude compound thus obtained was a yellow oil that contained the product according to HPLC-MS.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 886365-06-6, Methyl 5-bromo-4-methylpicolinate.

Reference:
Patent; Genentech, Inc.; Chan, Bryan; Daniels, Blake; Drobnick, Joy; Gazzard, Lewis; Heffron, Timothy; Huestis, Malcolm; Liang, Jun; Malhotra, Sushant; Mendonca, Rohan; Rajapaksa, Naomi; Siu, Michael; Stivala, Craig; Tellis, John; Wang, Weiru; Wei, BinQing; Zhou, Aihe; Cartwright, Matthew W.; Gancia, Emanuela; Jones, Graham; Lainchbury, Michael; Madin, Andrew; Seward, Eileen; Favor, David; Fong, Kin Chiu; Good, Andrew; Hu, Yonghan; Hu, Baihua; Lu, Aijun; US2018/282328; (2018); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 886365-06-6

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,886365-06-6, its application will become more common.

Synthetic Route of 886365-06-6, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 886365-06-6 as follows.

General procedure: Into a vial was weighed 1-(5-bromo-4-methylpyridin-2-yl)azetidin-2-one (50 mg, 0.207 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)-dichloromethane complex (8.6 mg, 0.0103 mmol), bis(pinacolato)diboron (52.7 mg, 0.207 mmol), and potassium acetate (61.1 mg, 0.622 mmol). Under nitrogen, anhydrous 1,4-dioxane (1.0 mL) was added and the vial was sealed. The reaction mixture was stirred at 100 C. for 17 h. After cooling to rt, under nitrogen, to the reaction vessel was added (+-)-(1S,2S)-N-(8-amino-6-chloro-2,7-naphthyridin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)cyclopropane-1-carboxamide (71.1 mg, 0.207 mmol), chloro(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II) (8.8 mg, 0.0104 mmol), 2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (5.0 mg, 0.0104 mmol), potassium carbonate (86 mg, 0.622 mmol), and water (0.2 mL). The vial was sealed and stirred at 100 C. for 19 h. The reaction mixture was concentrated to dryness and residue purified by flash column chromatography (CH2Cl2/MeOH, 100:0-85:15) and then by HPLC to afford the target compound as a white solid (29.6 mg, 31% over 2 steps); 1H NMR (400 MHz, DMSO-d6) delta 10.92 (s, 1H), 9.35 (s, 1H), 8.34 (s, 1H), 8.24 (s, 1H), 7.56 (s, 1H), 7.52 (s, 1H), 7.29 (s, 1H), 7.28 (br s, 2H), 6.93 (s, 1H), 3.77 (s, 3H), 3.73 (dd, J=4.7, 4.7 Hz, 2H), 3.12 (dd, J=4.7, 4.7 Hz, 2H), 2.44 (s, 3H), 2.24-2.17 (m, 2H), 1.43-1.33 (m, 1H), 1.23-1.14 (m, 1H).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,886365-06-6, its application will become more common.

Reference:
Patent; Genentech, Inc.; Chan, Bryan; Daniels, Blake; Drobnick, Joy; Gazzard, Lewis; Heffron, Timothy; Huestis, Malcolm; Liang, Jun; Malhotra, Sushant; Mendonca, Rohan; Rajapaksa, Naomi; Siu, Michael; Stivala, Craig; Tellis, John; Wang, Weiru; Wei, BinQing; Zhou, Aihe; Cartwright, Matthew W.; Gancia, Emanuela; Jones, Graham; Lainchbury, Michael; Madin, Andrew; Seward, Eileen; Favor, David; Fong, Kin Chiu; Good, Andrew; Hu, Yonghan; Hu, Baihua; Lu, Aijun; US2018/282328; (2018); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 886365-06-6

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,886365-06-6, its application will become more common.

Synthetic Route of 886365-06-6, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 886365-06-6 as follows.

General procedure: Into a vial was weighed 1-(5-bromo-4-methylpyridin-2-yl)azetidin-2-one (50 mg, 0.207 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)-dichloromethane complex (8.6 mg, 0.0103 mmol), bis(pinacolato)diboron (52.7 mg, 0.207 mmol), and potassium acetate (61.1 mg, 0.622 mmol). Under nitrogen, anhydrous 1,4-dioxane (1.0 mL) was added and the vial was sealed. The reaction mixture was stirred at 100 C. for 17 h. After cooling to rt, under nitrogen, to the reaction vessel was added (+-)-(1S,2S)-N-(8-amino-6-chloro-2,7-naphthyridin-3-yl)-2-(1-methyl-1H-pyrazol-4-yl)cyclopropane-1-carboxamide (71.1 mg, 0.207 mmol), chloro(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II) (8.8 mg, 0.0104 mmol), 2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (5.0 mg, 0.0104 mmol), potassium carbonate (86 mg, 0.622 mmol), and water (0.2 mL). The vial was sealed and stirred at 100 C. for 19 h. The reaction mixture was concentrated to dryness and residue purified by flash column chromatography (CH2Cl2/MeOH, 100:0-85:15) and then by HPLC to afford the target compound as a white solid (29.6 mg, 31% over 2 steps); 1H NMR (400 MHz, DMSO-d6) delta 10.92 (s, 1H), 9.35 (s, 1H), 8.34 (s, 1H), 8.24 (s, 1H), 7.56 (s, 1H), 7.52 (s, 1H), 7.29 (s, 1H), 7.28 (br s, 2H), 6.93 (s, 1H), 3.77 (s, 3H), 3.73 (dd, J=4.7, 4.7 Hz, 2H), 3.12 (dd, J=4.7, 4.7 Hz, 2H), 2.44 (s, 3H), 2.24-2.17 (m, 2H), 1.43-1.33 (m, 1H), 1.23-1.14 (m, 1H).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,886365-06-6, its application will become more common.

Reference:
Patent; Genentech, Inc.; Chan, Bryan; Daniels, Blake; Drobnick, Joy; Gazzard, Lewis; Heffron, Timothy; Huestis, Malcolm; Liang, Jun; Malhotra, Sushant; Mendonca, Rohan; Rajapaksa, Naomi; Siu, Michael; Stivala, Craig; Tellis, John; Wang, Weiru; Wei, BinQing; Zhou, Aihe; Cartwright, Matthew W.; Gancia, Emanuela; Jones, Graham; Lainchbury, Michael; Madin, Andrew; Seward, Eileen; Favor, David; Fong, Kin Chiu; Good, Andrew; Hu, Yonghan; Hu, Baihua; Lu, Aijun; US2018/282328; (2018); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sources of common compounds: Methyl 5-bromo-4-methylpicolinate

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 886365-06-6, Methyl 5-bromo-4-methylpicolinate.

Related Products of 886365-06-6, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 886365-06-6, name is Methyl 5-bromo-4-methylpicolinate. This compound has unique chemical properties. The synthetic route is as follows.

Intermediate Example Int15.17.045-bromo-4-methylpyridine-2-carboxylic acid To a stirred solution of Int15.17.03 (1 .0 g) in THF (20 mL), methanol (5 mL) and water (5 mL) was added an aqueous solution of lithium hydroxide (6.1 mL; c = 1M). The mixture was stirred at r.t. for 1 h. Aqueous hydrochloric acid was added, until pH 4 was reached. The mixture was extracted with chloroform using a continous liquid /liquid extractor (from Normag Labor- und Prozesstechnik GmbH, llmenau, Germany) for 16 h. The solvent was removed in vacuum to give 870 mg of the title compound.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 886365-06-6, Methyl 5-bromo-4-methylpicolinate.

Reference:
Patent; BAYER INTELLECTUAL PROPERTY GMBH; SCHULZE, Volker; KOSEMUND, Dirk; WENGNER, Antje, Margret; SIEMEISTER, Gerhard; STOeCKIGT, Detlef; LIENAU, Philip; SCHIROK, Hartmut; BRIEM, Hans; WO2012/143329; (2012); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sources of common compounds: Methyl 5-bromo-4-methylpicolinate

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 886365-06-6, Methyl 5-bromo-4-methylpicolinate.

Related Products of 886365-06-6, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 886365-06-6, name is Methyl 5-bromo-4-methylpicolinate. This compound has unique chemical properties. The synthetic route is as follows.

Intermediate Example Int15.17.045-bromo-4-methylpyridine-2-carboxylic acid To a stirred solution of Int15.17.03 (1 .0 g) in THF (20 mL), methanol (5 mL) and water (5 mL) was added an aqueous solution of lithium hydroxide (6.1 mL; c = 1M). The mixture was stirred at r.t. for 1 h. Aqueous hydrochloric acid was added, until pH 4 was reached. The mixture was extracted with chloroform using a continous liquid /liquid extractor (from Normag Labor- und Prozesstechnik GmbH, llmenau, Germany) for 16 h. The solvent was removed in vacuum to give 870 mg of the title compound.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 886365-06-6, Methyl 5-bromo-4-methylpicolinate.

Reference:
Patent; BAYER INTELLECTUAL PROPERTY GMBH; SCHULZE, Volker; KOSEMUND, Dirk; WENGNER, Antje, Margret; SIEMEISTER, Gerhard; STOeCKIGT, Detlef; LIENAU, Philip; SCHIROK, Hartmut; BRIEM, Hans; WO2012/143329; (2012); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of Methyl 5-bromo-4-methylpicolinate

With the rapid development of chemical substances, we look forward to future research findings about 886365-06-6.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 886365-06-6, name is Methyl 5-bromo-4-methylpicolinate. This compound has unique chemical properties. The synthetic route is as follows. Computed Properties of C8H8BrNO2

5-Bromo-4-methyl-pyridine-2-carboxylic acid methylamide: To 5-Bromo-4-methyl-pyridine-2-carboxylic acid methyl ester (200 mg, 0.869 mmol) and methylamine (135 mg, 11.34 mmol) was added (CH3)3Al (0.6 mg, 0.008 mmol). The mixture was placed in a sealed tube and heated at 100 C. for 1 h, after which the mixture was cooled, quenched with water, and extracted with EtOAc. The organic phase was dried, concentrated, and purified by column chromatograph to give 5-Bromo-4-methyl-pyridine-2-carboxylic acid methylamide (130 mg, 65%) as an off-white solid.

With the rapid development of chemical substances, we look forward to future research findings about 886365-06-6.

Reference:
Patent; Hoffmann-La Roche Inc.; Alam, Muzaffar; Du Bois, Daisy Joe; Hawley, Ronald Charles; Bhagirath, Niala; Kennedy-Smith, Joshua; Wilhelm, Robert Stephen; US2013/158049; (2013); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The origin of a common compound about Methyl 5-bromo-4-methylpicolinate

With the rapid development of chemical substances, we look forward to future research findings about 886365-06-6.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 886365-06-6, name is Methyl 5-bromo-4-methylpicolinate, molecular formula is C8H8BrNO2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. Computed Properties of C8H8BrNO2

Step 1 To a solution of 5-bromo-4-methylpyridine-2-carboxylic acid methyl ester (2.207 g, 9.59 mmol), 4-methoxylphenylboronic acid (1.604 g, 10.55 mmol) and 1,1′-bis(di-tert-butylphosphino)ferrocene palladium dichloride (0.313 g, 0.480 mmol) in THF (30 mL) was added potassium carbonate (2.0 M in water, 10.1 mL, 20.15 mmol). The mixture was purged with nitrogen and heated at 50 C. for 1 hour and at 60 C. for 5 hours. The reaction was poured into ethyl acetate and was washed with brine, dried over sodium sulfate, filtered and concentrated. It was purified by column chromatography to yield methyl 5-(4-methoxyphenyl)-4-methylpyridine-2-carboxylate (2.47 g, 9.59 mmol) as a pink solid. MS ESI calc’d. for C15H16NO3 [M+H]+ 258.1. found 258.1.

With the rapid development of chemical substances, we look forward to future research findings about 886365-06-6.

Reference:
Patent; Shao, Pengcheng Patrick; Sun, Wanying; Katipally, Revathi Reddy; Vachal, Petr; Ye, Feng; Liu, Jian; Sha, Deyou; US2013/109649; (2013); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Introduction of a new synthetic route about Methyl 5-bromo-4-methylpicolinate

With the rapid development of chemical substances, we look forward to future research findings about 886365-06-6.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 886365-06-6, name is Methyl 5-bromo-4-methylpicolinate. This compound has unique chemical properties. The synthetic route is as follows. category: pyridine-derivatives

1-116: 5-Bromo-4-methyl-pyridine-2-carboxylic acid methyl ester (800 mg, 3.48 mmol) was dissolved in DMF (16 mL). Tetrakis(triphenylphosphine)palladium(0) (462 mg, 0.400 mmol), potassium carbonate (2.07 g, 15.0 mmol), and 2,2-dimethylethenylboronic acid pinacol ester (0.82 mL, 4.0 mmol) were added. Argon was bubbled through the mixture for 5 min. The mixture was heated to 120C in a microwave reactor for 1 h. The mixture was diluted with sat’d ammonium chloride (10 mL) then extracted with EtOAc (3×5 mL). The combined organics were dried over sodium sulfate and concentrated. The resulting crude material was purified by silica gel chromatagraphy using 0-40% EtOAc in heptanes as the gradient to provide compound 1-116.

With the rapid development of chemical substances, we look forward to future research findings about 886365-06-6.

Reference:
Patent; EXELIXIS, INC.; XU, Wei; (170 pag.)WO2017/4609; (2017); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem