Brief introduction of 89282-03-1

The synthetic route of 89282-03-1 has been constantly updated, and we look forward to future research findings.

Synthetic Route of 89282-03-1 , The common heterocyclic compound, 89282-03-1, name is 3-Iodopyridin-4-ol, molecular formula is C5H4INO, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: In a pressure tube, a suspension of 5% Pd/C (5 mol%), 2-bromo-3-hydroxypyridine (0.5 mmol), LiCl (0.5 mmol),cesium carbonate (1 mmol), and terminal alkyne (1.0 mmol)in DMF (3 mL) was stirred for designated period at 150 C.The reaction mixture was filtered, and neutralized with saturatedNH4Cl solution, followed by extraction with ethyl acetate.The crude product was purified by columnchromatography with the use of hexane and ethyl acetate aseluents.The following compounds were prepared with abovedescribed general procedure.

The synthetic route of 89282-03-1 has been constantly updated, and we look forward to future research findings.

Reference:
Article; Park, Hee Jung; Kim, Ji-Eun; Yum, Eul Kgun; Kim, Young Hoon; Han, And Chang-Woo; Bulletin of the Korean Chemical Society; vol. 36; 1; (2015); p. 211 – 218;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Brief introduction of 89282-03-1

The synthetic route of 89282-03-1 has been constantly updated, and we look forward to future research findings.

Synthetic Route of 89282-03-1 , The common heterocyclic compound, 89282-03-1, name is 3-Iodopyridin-4-ol, molecular formula is C5H4INO, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: In a pressure tube, a suspension of 5% Pd/C (5 mol%), 2-bromo-3-hydroxypyridine (0.5 mmol), LiCl (0.5 mmol),cesium carbonate (1 mmol), and terminal alkyne (1.0 mmol)in DMF (3 mL) was stirred for designated period at 150 C.The reaction mixture was filtered, and neutralized with saturatedNH4Cl solution, followed by extraction with ethyl acetate.The crude product was purified by columnchromatography with the use of hexane and ethyl acetate aseluents.The following compounds were prepared with abovedescribed general procedure.

The synthetic route of 89282-03-1 has been constantly updated, and we look forward to future research findings.

Reference:
Article; Park, Hee Jung; Kim, Ji-Eun; Yum, Eul Kgun; Kim, Young Hoon; Han, And Chang-Woo; Bulletin of the Korean Chemical Society; vol. 36; 1; (2015); p. 211 – 218;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extracurricular laboratory: Synthetic route of 89282-03-1

At the same time, in my other blogs, there are other synthetic methods of this type of compound,89282-03-1, 3-Iodopyridin-4-ol, and friends who are interested can also refer to it.

With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.89282-03-1, name is 3-Iodopyridin-4-ol, molecular formula is C5H4INO, molecular weight is 221, as common compound, the synthetic route is as follows.name: 3-Iodopyridin-4-ol

General procedure: In a pressure tube, a suspension of 5% Pd/C (5 mol%), 2-bromo-3-hydroxypyridine (0.5 mmol), LiCl (0.5 mmol),cesium carbonate (1 mmol), and terminal alkyne (1.0 mmol)in DMF (3 mL) was stirred for designated period at 150 C.The reaction mixture was filtered, and neutralized with saturatedNH4Cl solution, followed by extraction with ethyl acetate.The crude product was purified by columnchromatography with the use of hexane and ethyl acetate aseluents.The following compounds were prepared with abovedescribed general procedure.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,89282-03-1, 3-Iodopyridin-4-ol, and friends who are interested can also refer to it.

Reference:
Article; Park, Hee Jung; Kim, Ji-Eun; Yum, Eul Kgun; Kim, Young Hoon; Han, And Chang-Woo; Bulletin of the Korean Chemical Society; vol. 36; 1; (2015); p. 211 – 218;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New downstream synthetic route of 3-Iodopyridin-4-ol

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,89282-03-1, its application will become more common.

Adding a certain compound to certain chemical reactions, such as: 89282-03-1, 3-Iodopyridin-4-ol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 89282-03-1, blongs to pyridine-derivatives compound. HPLC of Formula: C5H4INO

Add 1.41 g (0.012 mol) of Zn(CN)2 and 1.15 g (0.001 mol) of Pd(PPh3)4 to a solution of 2.21 g (0.01 mol) of 3-iodopyridin-4-ol in 20 ml of DMF. Heat the reaction mass to 100 and stir at this temperature for 2 h; use the TLC method to ensure the completeness of the reaction. Filtrate the resulting precipitate and wash it with DMF. Concentrate the filtrate under reduced pressure. Purify the resulting product by column chromatography, eluent ethyl acetate : methanol (9:1) Yield: 1.1 g (92%).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,89282-03-1, its application will become more common.

Reference:
Patent; JOINT STOCK COMPANY “BIOCAD”; GAVRILOV, Aleksey Sergeevich; ALESHUNIN, Pavel Aleksandrovich; GORBUNOVA, Svetlana Leonidovna; REKHARSKY, Mikhail Vladimirovich; KOZHEMYAKINA, Natalia Vladimirovna; KUKUSHKINA, Anna Aleksandrovna; KUSHAKOVA, Anna Sergeevna; MIKHAYLOV, Leonid Evgen`evich; MOLDAVSKY, Alexander; POPKOVA, Aleksandra Vladimirovna; SILONOV, Sergey Aleksandrovich; SMIRNOVA, Svetlana Sergeevna; IAKOVLEV, Pavel Andreevich; (197 pag.)WO2018/92047; (2018); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New downstream synthetic route of 3-Iodopyridin-4-ol

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,89282-03-1, its application will become more common.

Adding a certain compound to certain chemical reactions, such as: 89282-03-1, 3-Iodopyridin-4-ol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 89282-03-1, blongs to pyridine-derivatives compound. HPLC of Formula: C5H4INO

Add 1.41 g (0.012 mol) of Zn(CN)2 and 1.15 g (0.001 mol) of Pd(PPh3)4 to a solution of 2.21 g (0.01 mol) of 3-iodopyridin-4-ol in 20 ml of DMF. Heat the reaction mass to 100 and stir at this temperature for 2 h; use the TLC method to ensure the completeness of the reaction. Filtrate the resulting precipitate and wash it with DMF. Concentrate the filtrate under reduced pressure. Purify the resulting product by column chromatography, eluent ethyl acetate : methanol (9:1) Yield: 1.1 g (92%).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,89282-03-1, its application will become more common.

Reference:
Patent; JOINT STOCK COMPANY “BIOCAD”; GAVRILOV, Aleksey Sergeevich; ALESHUNIN, Pavel Aleksandrovich; GORBUNOVA, Svetlana Leonidovna; REKHARSKY, Mikhail Vladimirovich; KOZHEMYAKINA, Natalia Vladimirovna; KUKUSHKINA, Anna Aleksandrovna; KUSHAKOVA, Anna Sergeevna; MIKHAYLOV, Leonid Evgen`evich; MOLDAVSKY, Alexander; POPKOVA, Aleksandra Vladimirovna; SILONOV, Sergey Aleksandrovich; SMIRNOVA, Svetlana Sergeevna; IAKOVLEV, Pavel Andreevich; (197 pag.)WO2018/92047; (2018); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

A new synthetic route of 3-Iodopyridin-4-ol

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 89282-03-1, 3-Iodopyridin-4-ol.

Electric Literature of 89282-03-1, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 89282-03-1, name is 3-Iodopyridin-4-ol. This compound has unique chemical properties. The synthetic route is as follows.

Step 2. 4-chloro-3-iodopyridine (47)[00371] A stirred solution under nitrogen of 46 (2.00 g, 9.05 mmol) in POCl3 (20 ml) was heated to reflux for four hours, then rt. The reaction mixture was poured slowly into ice and the pH was adjusted to 10-1 1 with an aqueous solution of ammonium hydroxide. The aqueous layer was extracted twice with dichloromethane.The combined organic layer was washed with brine, dried over anhydrous Na2SC^, filtered and concentrated to afford the title compound 47 (1.27 g, 5.30 mmol, 58%) as a brown solid. MS: 239.9 (M+l).

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 89282-03-1, 3-Iodopyridin-4-ol.

Reference:
Patent; METHYLGENE, INC.; RAEPPEL, Stephane; SAAVEDRA, Oscar; CLARIDGE, Stephen; VAISBURG, Arkadii; GAUDETTE, Frederic; ISAKOVIC, Ljubomir; DEZIEL, Robert; WO2008/46216; (2008); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sources of common compounds: 89282-03-1

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,89282-03-1, its application will become more common.

Application of 89282-03-1 ,Some common heterocyclic compound, 89282-03-1, molecular formula is C5H4INO, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Dry DMF (6.0 mL) was added to methyl 4-hydroxy-3-iodobenzoate (0.56 g, 2.0 mmol), ethynylboronic acid MIDA ester (0.47 g, 2.6 mmol), CuI (38 mg, 0.20mmol), PdCl2(Ph3P)2 (70 mg, 0.10 mmol) and Ph3P (52 mg, 0.20 mmol) under N2. 1,1,3,3-Tetramethylguanidine(TMG) (0.30 mL, 2.4 mmol) was added to the resulting solution under N2. The reactionmixture was stirred at 50 Cfor 22 h under N2. The resulting mixture was diluted with water to form aprecipitate, which was filtered, washed with water and dried at room temperature. The obtained solid was dissolved in acetone and purified by flash chromatography (SiO2, CH2Cl2 : MeOH = 10 : 1). The eluted material was washed with hot EtOH and dried to give 1A (493.6 mg, 75%) as a pale brown solid; Furo[3,2-c]-2-boronic acid (13): Prepared from 4-hydroxy-3-iodopyridine and ethynylboronic acidMIDA ester. The resulting mixture was diluted with water and extracted with AcOEt. The organic layers were dried over Na2SO4 and concentrated. The residue was purified by flash chromatography (SiO2,CH2Cl2 : MeOH = 10 : 1) to give 180.7 mg of 1 : 1 mixture of MIDA boronate and boronic acid as a pale yellow powder (41%). The mixture was treated with hot EtOH to afford 13 (109.9 mg, 34%) as a paleyellow solid; IR (cm-1) 3000, 1736, 1616, 1591, 1570, 1541, 1473, 1373, 1356, 1300, 1228, 1164, 1145,1039; 1H-NMR (DMSO-d6) delta 7.57 (d, J = 0.5 Hz, 1H), 7.65 (d, J = 6.0 Hz, 1H), 8.46 (d, J = 6.0 Hz, 1H),9.00 (s, 1H); HRMS calcd for C7H7NO3B [M+H] 164.0514, found 164.0513 (Delta 0.05).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,89282-03-1, its application will become more common.

Reference:
Article; Sakurai, Yohji; Heterocycles; vol. 94; 7; (2017); p. 1322 – 1336;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

A new synthetic route of 3-Iodopyridin-4-ol

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 89282-03-1, 3-Iodopyridin-4-ol.

Electric Literature of 89282-03-1, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 89282-03-1, name is 3-Iodopyridin-4-ol. This compound has unique chemical properties. The synthetic route is as follows.

Step 2. 4-chloro-3-iodopyridine (47)[00371] A stirred solution under nitrogen of 46 (2.00 g, 9.05 mmol) in POCl3 (20 ml) was heated to reflux for four hours, then rt. The reaction mixture was poured slowly into ice and the pH was adjusted to 10-1 1 with an aqueous solution of ammonium hydroxide. The aqueous layer was extracted twice with dichloromethane.The combined organic layer was washed with brine, dried over anhydrous Na2SC^, filtered and concentrated to afford the title compound 47 (1.27 g, 5.30 mmol, 58%) as a brown solid. MS: 239.9 (M+l).

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 89282-03-1, 3-Iodopyridin-4-ol.

Reference:
Patent; METHYLGENE, INC.; RAEPPEL, Stephane; SAAVEDRA, Oscar; CLARIDGE, Stephen; VAISBURG, Arkadii; GAUDETTE, Frederic; ISAKOVIC, Ljubomir; DEZIEL, Robert; WO2008/46216; (2008); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sources of common compounds: 89282-03-1

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,89282-03-1, its application will become more common.

Application of 89282-03-1 ,Some common heterocyclic compound, 89282-03-1, molecular formula is C5H4INO, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Dry DMF (6.0 mL) was added to methyl 4-hydroxy-3-iodobenzoate (0.56 g, 2.0 mmol), ethynylboronic acid MIDA ester (0.47 g, 2.6 mmol), CuI (38 mg, 0.20mmol), PdCl2(Ph3P)2 (70 mg, 0.10 mmol) and Ph3P (52 mg, 0.20 mmol) under N2. 1,1,3,3-Tetramethylguanidine(TMG) (0.30 mL, 2.4 mmol) was added to the resulting solution under N2. The reactionmixture was stirred at 50 Cfor 22 h under N2. The resulting mixture was diluted with water to form aprecipitate, which was filtered, washed with water and dried at room temperature. The obtained solid was dissolved in acetone and purified by flash chromatography (SiO2, CH2Cl2 : MeOH = 10 : 1). The eluted material was washed with hot EtOH and dried to give 1A (493.6 mg, 75%) as a pale brown solid; Furo[3,2-c]-2-boronic acid (13): Prepared from 4-hydroxy-3-iodopyridine and ethynylboronic acidMIDA ester. The resulting mixture was diluted with water and extracted with AcOEt. The organic layers were dried over Na2SO4 and concentrated. The residue was purified by flash chromatography (SiO2,CH2Cl2 : MeOH = 10 : 1) to give 180.7 mg of 1 : 1 mixture of MIDA boronate and boronic acid as a pale yellow powder (41%). The mixture was treated with hot EtOH to afford 13 (109.9 mg, 34%) as a paleyellow solid; IR (cm-1) 3000, 1736, 1616, 1591, 1570, 1541, 1473, 1373, 1356, 1300, 1228, 1164, 1145,1039; 1H-NMR (DMSO-d6) delta 7.57 (d, J = 0.5 Hz, 1H), 7.65 (d, J = 6.0 Hz, 1H), 8.46 (d, J = 6.0 Hz, 1H),9.00 (s, 1H); HRMS calcd for C7H7NO3B [M+H] 164.0514, found 164.0513 (Delta 0.05).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,89282-03-1, its application will become more common.

Reference:
Article; Sakurai, Yohji; Heterocycles; vol. 94; 7; (2017); p. 1322 – 1336;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New downstream synthetic route of 3-Iodopyridin-4-ol

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,89282-03-1, its application will become more common.

Reference of 89282-03-1, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 89282-03-1 as follows.

A reaction mixture containing 3-ethynyl-5-nitro-1 -trityl-1 H-indazole (215 mg, 0.5 mmol), 3-iodo-pyridin-4-ol (132 mg, 0.6 mmol), copper (I) iodide (4.5 mg, 0.025 mmol), PdCI2(PPh3)2 and triethylamine (120 mg, 1.2 mmol) in DMF (3 ml_) was heated at 100 C overnight under argon. After the completion of reaction (shown by TLC), ethyl acetate (50 mL)was added and the reaction mixture was added to water. The organic layer was collected, washed with water, brine and concentrated under vacuum. After purification using silica (7% methanol in dichloromethane), the desired product was obtained (210 mg, 0.4 mmol ) in 80% yield.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,89282-03-1, its application will become more common.

Reference:
Patent; SCHERING CORPORATION; WO2008/153858; (2008); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem