Analyzing the synthesis route of 90993-26-3

With the rapid development of chemical substances, we look forward to future research findings about 90993-26-3.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 90993-26-3, name is 7-Bromo-1H-imidazo[4,5-c]pyridine, molecular formula is C6H4BrN3, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. SDS of cas: 90993-26-3

Step 3: 7-bromo-l-((2-(trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5-c]pyridine 5-oxide To a stirred solution of 7-bromo-lH-imidazo[4,5-c]pyridine 5-oxide (425 mg, 1.99 mmol) and N,N- dimethylformaldehyde (5.5 mL) at 0 C was added N,N-diisopropylethylamine (1.05 mL, 5.96 mmol), tetrabutylammonium iodide (74 mg, 0.199 mmol) and 2-(trimethylsilyl)ethoxymethyl chloride (0.78 mL, 3.97 mmol) and the reaction mixture stirred for 30 min at RT. The reaction mixture was washed with water (10 mL) and extracted with dichloromethane (2 x 10 mL). The combined organic layers were dried over sodium sulfate and concentrated to dryness in vacuo. The resulting residue was purified by column chromatography (silica gel, 100-200 mesh, 0 to 10% methanol in dichloromethane) affording an approximate 3:2 mixture of 7-bromo-l-((2- (trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5-c]pyridine 5-oxide and 7-bromo-3-((2- (trimethylsilyl)ethoxy)methyl)-3H-imidazo[4,5-c]pyridine 5-oxide N-(2- (trimethylsilyl)ethoxy)methane regioisomers as an orange foam (580 mg, 54%): H NMR (400 MHz, DMSO-d6; reported as an approximate 3:2 mixture of N-(2-(trimethylsilyl)ethoxy)methane isomers) delta 8.73 (d, = 1.5 Hz, 0.6 H), 8.60 (d, = 1.6 Hz, 1H), 8.38 (d, = 1.5 Hz, 1H), 8.36 (d, = 1.5 Hz, 0.6H), 8.10 (s, 1H), 8.09 (s, 0.6H), 5.76 (s, 1.3H), 5.48 (s, 2H), 3.63 – 3.59 (m, 1.4H), 3.56 – 3.50 (m, 2H), 0.97 – 0.91 (m, 3H), -0.01 (s, 9H), -0.02 (s, 6H). Step 4: 7-bromo-N-(tert-butyl)-l-((2-(trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5-c]pyrid^ amine To a stirred solution of 7-bromo-l-((2-(trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5-c]pyridine 5- oxide (102 mg, 0.296 mmol) and 1 ,2-dichloroethane (1.5 niL) was added N,N-diisopropylethylamine (0.195 niL, 1.11 mmol), i-butylamine (0.039 mL, 0.37 mmol) and bromotripyrrolidinophosphonium hexafluorophosphate (180 mg, 0.385 mmol) and the reaction mixture stirred for 22 h at RT. The reaction mixture was washed with saturated sodium bicarbonate solution (10 mL) and extracted with dichlorome thane (2 x 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated to dryness in vacuo. The resulting residue was purified by column chromatography (silica gel, 100-200 mesh, 0 to 50% ethyl acetate in heptane) affording an approximate 3:2 mixture of 7-bromo-N-(tert-butyl)-l-((2-(trimethy and 7-bromo-N-(tert-butyl)-3-((2-(trimethylsilyl)ethoxy)methyl)-3H-imidazo[4,5-c]pyridin-4-amine N- SEM regioisomers (47 mg, 40%): H NMR (400 MHz, DMSO-d6; reported as an approximate 3:2 mixture of N-SEM isomers) delta 8.00 (s, 0.7H), 7.95 (s, 1H), 7.81 (s, 0.7H), 7.77 (s, 1H), 6.02 (br s, 0.8H), 5.77 (s, 2H), 5.54 (s, 1.6H), 5.43 (br s, 1H), 3.63 – 3.57 (m, 3.7H), 1.02 – 0.89 (m, 3.8H), 0.00 (s, 6H), -0.02 (s, 9H). Step 5: N-(tert-butyl)-7-(4-cyclopropyl-6,6-dimethyl-8,9-dihydro-6H-[l,4]oxazino[4,3-e]purin-2- yl)-l-((2-(trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5-c]pyridin-4-amine 4-cyclopropyl-6,6-dimethyl-2-(tributylstannyl)-8,9-dihydro-6H-[l,4]oxazino[4,3-e]purine (64.5 mg, 0.12 mmol) and 7-bromo-N-(tert-butyl)-l-((2-(trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5- c]pyridin-4-amine (46 mg, 0.115 mmol) were dissolved in 1,4-dioxane (2.5 mL) in a microwave vial equipped with a stir bar and the mixture was purged with nitrogen gas for 10 min. Copper(I) thiophene-2-carboxylate (22 mg, 0.115 mmol) and tetrakis(triphenylphosphine)palladium(0) (13.3 mg, 0.012 mmol) were then added and the reaction mixture was microwaved at 140 C for 35 min. The reaction mixture was filtered through a celite bed and washed with dichlorome thane (10 mL). The filtrate was concentrated to dryness in vacuo, dissolved in ethyl acetate and washed with brine (10 niL). The organic layer was separated, dried over sodium sulfate and concentrated to afford crude N-(tert-butyl)-7-(4-cyclopropyl-6,6-dimethyl-8,9-dihydro-6H-[l,4]oxazino[4,3-e]purin-2-yl)-l-((2- (trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5-c]pyridin-4-amine used for the next step without any further purification.

With the rapid development of chemical substances, we look forward to future research findings about 90993-26-3.

Reference:
Patent; F. HOFFMANN-LA ROCHE AG; GENENTECH, INC.; ESTRADA, Anthony; HUESTIS, Malcolm; KELLAR, Terry; PATEL, Snahel; SHORE, Daniel; SIU, Michael; (260 pag.)WO2016/142310; (2016); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Brief introduction of 90993-26-3

According to the analysis of related databases, 90993-26-3, the application of this compound in the production field has become more and more popular.

Reference of 90993-26-3, Adding some certain compound to certain chemical reactions, such as: 90993-26-3, name is 7-Bromo-1H-imidazo[4,5-c]pyridine,molecular formula is C6H4BrN3, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 90993-26-3.

Step 3: 7-bromo-l-((2-(trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5-c]pyridine 5-oxide To a stirred solution of 7-bromo-lH-imidazo[4,5-c]pyridine 5-oxide (425 mg, 1.99 mmol) and N,N- dimethylformaldehyde (5.5 mL) at 0 C was added N,N-diisopropylethylamine (1.05 mL, 5.96 mmol), tetrabutylammonium iodide (74 mg, 0.199 mmol) and 2-(trimethylsilyl)ethoxymethyl chloride (0.78 mL, 3.97 mmol) and the reaction mixture stirred for 30 min at RT. The reaction mixture was washed with water (10 mL) and extracted with dichloromethane (2 x 10 mL). The combined organic layers were dried over sodium sulfate and concentrated to dryness in vacuo. The resulting residue was purified by column chromatography (silica gel, 100-200 mesh, 0 to 10% methanol in dichloromethane) affording an approximate 3:2 mixture of 7-bromo-l-((2- (trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5-c]pyridine 5-oxide and 7-bromo-3-((2- (trimethylsilyl)ethoxy)methyl)-3H-imidazo[4,5-c]pyridine 5-oxide N-(2- (trimethylsilyl)ethoxy)methane regioisomers as an orange foam (580 mg, 54%): H NMR (400 MHz, DMSO-d6; reported as an approximate 3:2 mixture of N-(2-(trimethylsilyl)ethoxy)methane isomers) delta 8.73 (d, = 1.5 Hz, 0.6 H), 8.60 (d, = 1.6 Hz, 1H), 8.38 (d, = 1.5 Hz, 1H), 8.36 (d, = 1.5 Hz, 0.6H), 8.10 (s, 1H), 8.09 (s, 0.6H), 5.76 (s, 1.3H), 5.48 (s, 2H), 3.63 – 3.59 (m, 1.4H), 3.56 – 3.50 (m, 2H), 0.97 – 0.91 (m, 3H), -0.01 (s, 9H), -0.02 (s, 6H).

According to the analysis of related databases, 90993-26-3, the application of this compound in the production field has become more and more popular.

Reference:
Patent; F. HOFFMANN-LA ROCHE AG; GENENTECH, INC.; ESTRADA, Anthony; HUESTIS, Malcolm; KELLAR, Terry; PATEL, Snahel; SHORE, Daniel; SIU, Michael; (260 pag.)WO2016/142310; (2016); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Application of 90993-26-3

Statistics shows that 90993-26-3 is playing an increasingly important role. we look forward to future research findings about 7-Bromo-1H-imidazo[4,5-c]pyridine.

Reference of 90993-26-3, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.90993-26-3, name is 7-Bromo-1H-imidazo[4,5-c]pyridine, molecular formula is C6H4BrN3, molecular weight is 198.02, as common compound, the synthetic route is as follows.

Step 2: 7-bromo-lH-imidazo[4,5-c]pyridine 5-oxide To a stirred solution of 7-bromo-lH-imidazo[4,5-c]pyridine (1.0 g, 5.05 mol) and chloroform (20 mL) was added m-chloroperoxybenzoic acid (2.83 g, 12.6 mmol) and the reaction mixture stirred for 30 min at RT. The reaction mixture was filtered, washed with chloroform (10 mL), and the white solid was dried under high vacuum. The solid resulting solid was dissolved in a dichloromethane and methanol mixture, absorbed onto celite and purified by column chromatography (silica gel, 100-200 mesh, 0 to 20% methanol in dichloromethane with 3% triethylamine) affording 7-bromo-lH- imidazo[4,5-c]pyridine 5-oxide as a white solid (580 mg, 54%) used as is in the next step.

Statistics shows that 90993-26-3 is playing an increasingly important role. we look forward to future research findings about 7-Bromo-1H-imidazo[4,5-c]pyridine.

Reference:
Patent; F. HOFFMANN-LA ROCHE AG; GENENTECH, INC.; ESTRADA, Anthony; HUESTIS, Malcolm; KELLAR, Terry; PATEL, Snahel; SHORE, Daniel; SIU, Michael; (260 pag.)WO2016/142310; (2016); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New downstream synthetic route of 7-Bromo-1H-imidazo[4,5-c]pyridine

According to the analysis of related databases, 90993-26-3, the application of this compound in the production field has become more and more popular.

Electric Literature of 90993-26-3, Adding some certain compound to certain chemical reactions, such as: 90993-26-3, name is 7-Bromo-1H-imidazo[4,5-c]pyridine,molecular formula is C6H4BrN3, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 90993-26-3.

Step 3: 7-bromo-l-((2-(trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5-c]pyridine 5-oxide To a stirred solution of 7-bromo-lH-imidazo[4,5-c]pyridine 5-oxide (425 mg, 1.99 mmol) and N,N- dimethylformaldehyde (5.5 mL) at 0 C was added N,N-diisopropylethylamine (1.05 mL, 5.96 mmol), tetrabutylammonium iodide (74 mg, 0.199 mmol) and 2-(trimethylsilyl)ethoxymethyl chloride (0.78 mL, 3.97 mmol) and the reaction mixture stirred for 30 min at RT. The reaction mixture was washed with water (10 mL) and extracted with dichloromethane (2 x 10 mL). The combined organic layers were dried over sodium sulfate and concentrated to dryness in vacuo. The resulting residue was purified by column chromatography (silica gel, 100-200 mesh, 0 to 10% methanol in dichloromethane) affording an approximate 3:2 mixture of 7-bromo-l-((2- (trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5-c]pyridine 5-oxide and 7-bromo-3-((2- (trimethylsilyl)ethoxy)methyl)-3H-imidazo[4,5-c]pyridine 5-oxide N-(2- (trimethylsilyl)ethoxy)methane regioisomers as an orange foam (580 mg, 54%): H NMR (400 MHz, DMSO-d6; reported as an approximate 3:2 mixture of N-(2-(trimethylsilyl)ethoxy)methane isomers) delta 8.73 (d, = 1.5 Hz, 0.6 H), 8.60 (d, = 1.6 Hz, 1H), 8.38 (d, = 1.5 Hz, 1H), 8.36 (d, = 1.5 Hz, 0.6H), 8.10 (s, 1H), 8.09 (s, 0.6H), 5.76 (s, 1.3H), 5.48 (s, 2H), 3.63 – 3.59 (m, 1.4H), 3.56 – 3.50 (m, 2H), 0.97 – 0.91 (m, 3H), -0.01 (s, 9H), -0.02 (s, 6H). Step 4: 7-bromo-N-(tert-butyl)-l-((2-(trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5-c]pyrid^ amine To a stirred solution of 7-bromo-l-((2-(trimethylsilyl)ethoxy)methyl)-lH-imidazo[4,5-c]pyridine 5- oxide (102 mg, 0.296 mmol) and 1 ,2-dichloroethane (1.5 niL) was added N,N-diisopropylethylamine (0.195 niL, 1.11 mmol), i-butylamine (0.039 mL, 0.37 mmol) and bromotripyrrolidinophosphonium hexafluorophosphate (180 mg, 0.385 mmol) and the reaction mixture stirred for 22 h at RT. The reaction mixture was washed with saturated sodium bicarbonate solution (10 mL) and extracted with dichlorome thane (2 x 10 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated to dryness in vacuo. The resulting residue was purified by column chromatography (silica gel, 100-200 mesh, 0 to 50% ethyl acetate in heptane) affording an approximate 3:2 mixture of 7-bromo-N-(tert-butyl)-l-((2-(trimethy and 7-bromo-N-(tert-butyl)-3-((2-(trimethylsilyl)ethoxy)methyl)-3H-imidazo[4,5-c]pyridin-4-amine N- SEM regioisomers (47 mg, 40%): H NMR (400 MHz, DMSO-d6; reported as an approximate 3:2 mixture of N-SEM isomers) delta 8.00 (s, 0.7H), 7.95 (s, 1H), 7.81 (s, 0.7H), 7.77 (s, 1H), 6.02 (br s, 0.8H), 5.77 (s, 2H), 5.54 (s, 1.6H), 5.43 (br s, 1H), 3.63 – 3.57 (m, 3.7H), 1.02 – 0.89 (m, 3.8H), 0.00 (s, 6H), -0.02 (s, 9H).

According to the analysis of related databases, 90993-26-3, the application of this compound in the production field has become more and more popular.

Reference:
Patent; F. HOFFMANN-LA ROCHE AG; GENENTECH, INC.; ESTRADA, Anthony; HUESTIS, Malcolm; KELLAR, Terry; PATEL, Snahel; SHORE, Daniel; SIU, Michael; (260 pag.)WO2016/142310; (2016); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem