Dimensional Reduction of Eu-Based Metal-Organic Framework as Catalysts for Oxidation Catalysis of C(sp3)-H Bond was written by Zhang, Yin;Yu, Wei-Dong;Zhao, Cai-Feng;Yan, Jun. And the article was included in Chinese Journal of Chemistry in 2022.SDS of cas: 91-02-1 This article mentions the following:
Developing new catalysts for highly selectivity and conversion of saturated C(sp3)-H bonds is of great significance. In order to obtain catalysts with high catalytic performance, six Eu-based MOFs with different structural characteristics were obtained by using europium ions and different organic acid ligands, namely Eu-1∼Eu-6. Eu-1, Eu-2 and Eu-3 featured three-dimensional structures, while Eu-4 and Eu-5 featured two-dimensional structures. Differently, a one-dimensional chain structure of Eu-6 was obtained by changing the ligand. All the six MOFs were applied to the catalytic reaction of C(sp3)-H bond, and it was found that the catalytic effect was gradually enhanced with the decrease of dimension and the increase of the size of channels. As expected, Eu-6 showed the highest selectivity (∼99%) and conversion (∼99%). Moreover, catalytic cycling and stability tests showed Eu-6 can be a reliable catalyst. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1SDS of cas: 91-02-1).
Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine has a conjugated system of six π electrons that are delocalized over the ring. The molecule is planar and, thus, follows the Hückel criteria for aromatic systems. Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C–H in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.SDS of cas: 91-02-1