Analyzing the synthesis route of 914358-72-8

According to the analysis of related databases, 914358-72-8, the application of this compound in the production field has become more and more popular.

Reference of 914358-72-8, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 914358-72-8, name is 5-Bromo-3-chloro-2-methylpyridine, molecular formula is C6H5BrClN, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Intermediate 443-Chloro-2-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine; A suspension of 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (0.836 g, 3.29 mmol), 5-bromo-3-chloro-2-methylpyridine (Intermediate 43, 0.34 g, 1.65 mmol), and potassium acetate (0.485 g, 4.94 mmol) in dioxane (5 mL) was degassed with a stream of N2 (g) for a couple of min. PdCl2(dppf) CH2Cl2 (0.067 g, 0.08 mmol) was added and the mixture was heated at reflux under N2 (g) for 1.5 h. The mixture was allowed to cool to r.t. and was then filtered. The filter cake was washed with EtOAc. The filtrate was concentrated in vacuo. The residue was purified by flash chromatography (40 g SiO2, gradient elution with 0-80% EtOAc in heptane to yield the title compound (0.44 g, quantitative yield): 1H NMR (500 MHz, CDCl3) delta ppm 1.35 (s, 12H), 2.65 (s, 3H), 7.95-8.03 (m, 1H), 8.69 (d, 1H); MS (ES+) m/z 172 [M+H]+(mass corresponding to the boronic acid).

According to the analysis of related databases, 914358-72-8, the application of this compound in the production field has become more and more popular.

Reference:
Patent; ASTRAZENECA AB; US2012/165347; (2012); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sources of common compounds: 914358-72-8

With the rapid development of chemical substances, we look forward to future research findings about 914358-72-8.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 914358-72-8, name is 5-Bromo-3-chloro-2-methylpyridine, molecular formula is C6H5BrClN, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. Safety of 5-Bromo-3-chloro-2-methylpyridine

A mixture of tert-butyl 2-(3-acetyl-5-(4, 4, 5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-1-yl)acetate (S2, 100 mg, 1 equiv), 5-bromo-3-chloro-2-methylpyridine (S3, 62 mg, 1.2 equiv), and cesium carbonate (230 mg, 2.8 equiv) in DMF (8 mL) was purged with argon for 5 min. 1,1?-Bis(diphenylphosphino)ferrocenedichloropalladium(II) (14 mg, 0.06 equiv) was then added under argon and the reaction mixture w is heated to 90 C. overnight. The reaction mixture was cooled to room temperature and diluted with EtOAc (20 mL) and water (10 ml). The organic layer was then separated, washed with brine (3×15 mL), dried, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel (5% MeOH in DCM) to give 100 mg of tert-butyl 2-(3-acetyl-5-(5-chloro-6-methylpyridin-3-yl)-1H-indol-1-yl)acetate (S4) as a yellow solid.

With the rapid development of chemical substances, we look forward to future research findings about 914358-72-8.

Reference:
Patent; ACHILLION PHARMACEUTICALS, INC.; WILES, Jason, Allan; PHADKE, Avinash, S.; DESHPANDE, Milind; AGARWAK, Atul; CHEN, Dawei; GADHACHANDA, Venkat, Rao; HASHIMOTO, Akihiro; PAIS, Godwin; WANG, Qiuping; WANG, Xiangzhu; (905 pag.)WO2017/35353; (2017); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New downstream synthetic route of 914358-72-8

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,914358-72-8, its application will become more common.

Related Products of 914358-72-8 ,Some common heterocyclic compound, 914358-72-8, molecular formula is C6H5BrClN, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Example 60(1r,4r)-6′-(5-Chloro-6-methylpyridin-3-yl)-4-methoxy-5”-methyl-3’H-dispiro[cyclohexane-1,2′-indene-1′,2”-imidazol]-4”-amine; 4,4,4′,4′,5,5,5′,5′-Octamethyl-2,2′-bi(1,3,2-dioxaborolane) (287 mg, 1.13 mmol), (1r,4r)-6′-bromo-4-methoxy-5”-methyl-3’H-dispiro[cyclohexane-1,2′-indene-1′,2”-imidazol]-4”-amine (Example 19, 213 mg, 0.57 mmol) and potassium acetate (167 mg, 1.70 mmol) and dioxane (3 mL) were added and the mixture was degassed with a stream of argon (g) for a couple of min. PdCl2(dppf) CH2Cl2 (32.4 mg, 0.04 mmol) was added and the mixture was heated to reflux for 1.5 h under N2 atmosphere. 4,4,4′,4′,5,5,5′,5′-Octamethyl-2,2′-bi(1,3,2-dioxaborolane) (120 mg, 0.47 mmol) was added and the reaction was heated to reflux overnight. The volatiles were removed in vacuo and 80 mg of the residue ((1r,4r)-4-methoxy-5”-methyl-6′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3’H-dispiro[cyclohexane-1,2′-indene-1′,2”-imidazol]-4”-amine (MS (ES+) m/z 424 [M+H]+) was mixed with 5-bromo-3-chloro-2-methylpyridine (Intermediate 43, 47 mg, 0.23 mmol), K2CO3 (0.38 mL, 0.76 mmol) and dioxane (2 mL). The mixture was degassed with a stream of argon (g) for a couple of min. PdCl2(dppf) CH2Cl2 adduct (138 mg, 0.19 mmol) was added. The vial was sealed and heated in a microwave reactor at 140 C. for 30 min. EtOAc was added and the mixture was washed with brine and water. The organic phase was dried with MgSO4, filtered and concentrated in vacuo. The crude product was purified by flash chromatography (12 g SiO2, 0-20% MeOH containing 0.1 M NH3 in DCM). The crude product was purified with preparative chromatography. The fractions containing product were combined and concentrated. The water phase was extracted with DCM and the phases were separated using a phase separator. The organic phase was concentrated in vacuo yielding the title compound (5 mg, 6% yield): 1H NMR (CD3OD) delta ppm 1.11 (td, 1H), 1.24-1.43 (m, 2H), 1.49 (td, 1H), 1.63 (td, 2H), 1.90-2.00 (m, 2H), 2.32 (s, 3H), 2.61 (s, 3H), 3.04-3.12 (m, 1H), 3.15 (d, 1H), 3.25 (d, 1H), 3.33 (s, 3H), 6.99 (d, 1H), 7.47 (d, 1H), 7.55 (dd, 1H), 7.99 (d, 1 H), 8.51 (d, 1H); MS (MM-ES+APCI)+ m/z 423 [M+H]+.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,914358-72-8, its application will become more common.

Reference:
Patent; ASTRAZENECA AB; US2012/165347; (2012); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem