Simple exploration of 6-Bromo-2-iodopyridin-3-amine

Statistics shows that 915006-52-9 is playing an increasingly important role. we look forward to future research findings about 6-Bromo-2-iodopyridin-3-amine.

Electric Literature of 915006-52-9, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.915006-52-9, name is 6-Bromo-2-iodopyridin-3-amine, molecular formula is C5H4BrIN2, molecular weight is 298.91, as common compound, the synthetic route is as follows.

To a mixture of 6-bromo-2-iodopyridin-3-amine (100 mg, 0.34 mmol), 1,2-dimethoxy-4-(prop-1-yn-1-yl)benzene (74 mg, 0.42 mmol), lithium chloride (18 mg, 0.42 mmol), sodium carbonate (180 mg, 1.68 mmol) and Pd(dppf)Cl2 (12.5 mg, 0.017 mmol) in a screw cap vial was added DMF (2 mL). The vial was fitted with a Teflon-lined septum cap. The system was evacuated under vacuum (via a needle from a nitrogen/vacuum manifold line) and backfilled with nitrogen gas. The procedure was repeated three times. The needle was removed and the vial was heated at 100 C. for 16 h. LCMS analysis shows formation of two isomers, in approximately 3:1 ratio. 1H NMR analysis suggested the major product to be 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (5A-1). The reaction mixture was diluted with EtOAc (50 mL), poured into a separatory funnel and washed with 10% aqueous LiCl solution (2*10 mL) and saturated aqueous NaCl solution (10 mL), dried (Na2SO4), filtered and the filtrate was concentrated. The crude product was dissolved in a small amount of DCM and purified on a silica gel column chromatography with a 15 min gradient from 0%-100% DCM/EtOAc to afford 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (Intermediate 5A-1) that was contaminated with Intermediate 5A-2, 5-bromo-3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridine, m/z (303, M+1), 80 mg (67%). To a mixture containing 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (Intermediate 5A-1) and Intermediate 5A-2 (100 mg, 0.29 mmol), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate (111 mg, 0.36 mmol), and Pd(dppf)C12 (10.5 mg, 0.014 mmol) in a screw cap vial was added THF (2.5 mL) followed by 3M aqueous solution of tripotassium phosphate (0.10 mL, 0.3 mmol). The vial was fitted with a Teflon lined septum cap. The system was evacuated under vacuum (via a needle from a nitrogen/vacuum manifold line) and backfilled with nitrogen gas. The procedure was repeated three times. The needle was removed and the vial was heated at 75 C. for 3 h. The reaction mixture was cooled to room temperature and treated with saturated aqueous NaCl solution (5 mL) and extracted with ethyl acetate (3*10 mL). The extracts were combined, dried (Na2SO4), filtered and concentrated. The crude product was dissolved in a small amount of DCM and purified on silica gel column chromatography eluting with a 10 min gradient from 5%-100% DCM/EtOAc. No separation was observed. A mixture of tert-butyl 4-(2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (Intermediate 5B) and the regioisomer tert-butyl 4-(3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1 (2H)-carboxylate was isolated (100 mg, 77% yield), m/z (550, M+1) and was used as such in subsequent step. A mixture of tert-butyl 4-(2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (Intermediate 5B) and regioisomer tert-butyl 4-(3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (95 mg, 0.21 mmol) was dissolved in MeOH (5 mL) and transferred to a Parr bottle. The mixture was purged with nitrogen. Pearlman’s Catalyst (25 mg, 0.036 mmol) was added and the bottle was pressurized with hydrogen gas (50 psi) and shaken for 22 h. The reaction mixture was filtered through a pad of Celite and the filtrate was concentrated. The resulting residue was dissolved in a small amount of DCM and charged to a silica gel column, which was eluted over a 10 min gradient with 1%-5% MeOH/DCM to afford a mixture of tert-butyl 4-(2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (Intermediate 5C) and the regioisomer tert-butyl 4-(3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1 (2H)-carboxylate (82 mg, 80%), m/z (452, M+H). The mixture of isomers (tert-butyl 4-(2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)piperidine-1-carboxylate (Intermediate 5C) and tert-butyl 4-(3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)piperidine-1-carboxylate (80 mg, 0.18 mmol) were suspended in 4 N HCl in dioxane (4 mL, 16.00 mmol), stirred for 30 min, and concentrated to dryness. The resulting residue was suspended in diethyl ether (1 mL) and the solids were filtered and dried to give a mixture of 2-(3,4-dimethoxyphenyl)-3-methyl-5-(piperidin-4-yl)-1H-pyrrolo[3,2-b]pyridine (Intermediate 5D) and 3-(3,4-dimethoxyphenyl)-2-methyl-5-(piperidin-4-yl)-1H-pyrrolo[3,2-b]pyridine as bis HCl salts (50 mg, 65%), m/z (352, M+H). To a solution containing a mixture of 3-(3,4-dimethoxyphenyl)-2-methyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridine 2 HCl (Intermediate 5D) and 2-(3,4-dimethoxyphenyl)-3-methyl-5-(piperidin-4-yl)-1H-pyrrolo[3,2-b]pyridine, 2 HCl (30 mg, 0.07 mmol) in DMF (1 mL) was added 1-isobu…

Statistics shows that 915006-52-9 is playing an increasingly important role. we look forward to future research findings about 6-Bromo-2-iodopyridin-3-amine.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; Dyckman, Alaric J.; Dodd, Dharmpal S.; Mussari, Christopher P.; Sherwood, Trevor C.; Whiteley, Brian K.; Gilmore, John L.; Kumar, Sreekantha Ratna; Pasunoori, Laxman; Srinivas, Pitani Veera Venkata; Duraisamy, Srinivasan Kunchithapatham; Hegde, Subramanya; Anumula, Rushith Kumar; US2019/185469; (2019); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Brief introduction of 915006-52-9

With the rapid development of chemical substances, we look forward to future research findings about 915006-52-9.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 915006-52-9, name is 6-Bromo-2-iodopyridin-3-amine. This compound has unique chemical properties. The synthetic route is as follows. Recommanded Product: 915006-52-9

A solution of 6-bromo-2-iodo-pyridin-3-ylamine (as prepared in the previous step, 1.00 g, 3.35 mmol) in toluene (27 mL) and EtOH (13.5 mL) was treated with 2.0 M aq Na2CO3 (13.4 mL, 26.8 mmol) and 4,4-dimethyl-cyclohex-1-enylboronic acid (567 mg, 3.68 mmol). The mixture was degassed via sonication, placed under Ar, treated with Pd(PPh3)4 (271 mg, 0.234 mmol), and heated to 80 C. for 5 h. The cooled mixture was diluted with EtOAc (100 mL) and washed with water (2×50 mL). The combined aqueous layers were extracted with EtOAc (1×100 mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. Silica gel chromatography of the residue on a Varian MegaBond Elut 50-g column with 10% EtOAc-hexane afforded 668 mg (71%) of 6-bromo-2-(4,4-dimethyl-cyclohex-1-enyl)-pyridin-3-ylamine as a tan solid. 1H-NMR (CDCl3; 400 MHz): delta 7.06 (d, 1H, J=8.3 Hz), 6.85 (d, 1H, J=8.3 Hz), 5.95 (m, 1H), 3.86 (br s, 2H), 2.43-2.39 (m, 2H), 1.99-1.97 (m, 2H), 1.51 (t, 2H, J=6.4 Hz), 0.99 (s, 6H).

With the rapid development of chemical substances, we look forward to future research findings about 915006-52-9.

Reference:
Patent; Illig, Carl R.; Ballentine, Shelley K.; Chen, Jinsheng; DesJarlais, Renee Louise; Meegalla, Sanath K.; Wall, Mark; Wilson, Kenneth; US2007/249608; (2007); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Brief introduction of 915006-52-9

With the rapid development of chemical substances, we look forward to future research findings about 915006-52-9.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 915006-52-9, name is 6-Bromo-2-iodopyridin-3-amine. This compound has unique chemical properties. The synthetic route is as follows. Recommanded Product: 915006-52-9

A solution of 6-bromo-2-iodo-pyridin-3-ylamine (as prepared in the previous step, 1.00 g, 3.35 mmol) in toluene (27 mL) and EtOH (13.5 mL) was treated with 2.0 M aq Na2CO3 (13.4 mL, 26.8 mmol) and 4,4-dimethyl-cyclohex-1-enylboronic acid (567 mg, 3.68 mmol). The mixture was degassed via sonication, placed under Ar, treated with Pd(PPh3)4 (271 mg, 0.234 mmol), and heated to 80 C. for 5 h. The cooled mixture was diluted with EtOAc (100 mL) and washed with water (2×50 mL). The combined aqueous layers were extracted with EtOAc (1×100 mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. Silica gel chromatography of the residue on a Varian MegaBond Elut 50-g column with 10% EtOAc-hexane afforded 668 mg (71%) of 6-bromo-2-(4,4-dimethyl-cyclohex-1-enyl)-pyridin-3-ylamine as a tan solid. 1H-NMR (CDCl3; 400 MHz): delta 7.06 (d, 1H, J=8.3 Hz), 6.85 (d, 1H, J=8.3 Hz), 5.95 (m, 1H), 3.86 (br s, 2H), 2.43-2.39 (m, 2H), 1.99-1.97 (m, 2H), 1.51 (t, 2H, J=6.4 Hz), 0.99 (s, 6H).

With the rapid development of chemical substances, we look forward to future research findings about 915006-52-9.

Reference:
Patent; Illig, Carl R.; Ballentine, Shelley K.; Chen, Jinsheng; DesJarlais, Renee Louise; Meegalla, Sanath K.; Wall, Mark; Wilson, Kenneth; US2007/249608; (2007); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New learning discoveries about 915006-52-9

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 915006-52-9, 6-Bromo-2-iodopyridin-3-amine, other downstream synthetic routes, hurry up and to see.

Reference of 915006-52-9 ,Some common heterocyclic compound, 915006-52-9, molecular formula is C5H4BrIN2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

To a mixture of 6-bromo-2-iodopyridin-3-amine (100 mg, 0.34 mmol), 1,2-dimethoxy-4-(prop-1-yn-1-yl)benzene (74 mg, 0.42 mmol), lithium chloride (18 mg, 0.42 mmol), sodium carbonate (180 mg, 1.68 mmol) and Pd(dppf)Cl2 (12.5 mg, 0.017 mmol) in a screw cap vial was added DMF (2 mL). The vial was fitted with a Teflon-lined septum cap. The system was evacuated under vacuum (via a needle from a nitrogen/vacuum manifold line) and backfilled with nitrogen gas. The procedure was repeated three times. The needle was removed and the vial was heated at 100 C. for 16 h. LCMS analysis shows formation of two isomers, in approximately 3:1 ratio. 1H NMR analysis suggested the major product to be 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (5A-1). The reaction mixture was diluted with EtOAc (50 mL), poured into a separatory funnel and washed with 10% aqueous LiCl solution (2*10 mL) and saturated aqueous NaCl solution (10 mL), dried (Na2SO4), filtered and the filtrate was concentrated. The crude product was dissolved in a small amount of DCM and purified on a silica gel column chromatography with a 15 min gradient from 0%-100% DCM/EtOAc to afford 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (Intermediate 5A-1) that was contaminated with Intermediate 5A-2, 5-bromo-3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridine, m/z (303, M+1), 80 mg (67%). To a mixture containing 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (Intermediate 5A-1) and Intermediate 5A-2 (100 mg, 0.29 mmol), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate (111 mg, 0.36 mmol), and Pd(dppf)C12 (10.5 mg, 0.014 mmol) in a screw cap vial was added THF (2.5 mL) followed by 3M aqueous solution of tripotassium phosphate (0.10 mL, 0.3 mmol). The vial was fitted with a Teflon lined septum cap. The system was evacuated under vacuum (via a needle from a nitrogen/vacuum manifold line) and backfilled with nitrogen gas. The procedure was repeated three times. The needle was removed and the vial was heated at 75 C. for 3 h. The reaction mixture was cooled to room temperature and treated with saturated aqueous NaCl solution (5 mL) and extracted with ethyl acetate (3*10 mL). The extracts were combined, dried (Na2SO4), filtered and concentrated. The crude product was dissolved in a small amount of DCM and purified on silica gel column chromatography eluting with a 10 min gradient from 5%-100% DCM/EtOAc. No separation was observed. A mixture of tert-butyl 4-(2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (Intermediate 5B) and the regioisomer tert-butyl 4-(3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1 (2H)-carboxylate was isolated (100 mg, 77% yield), m/z (550, M+1) and was used as such in subsequent step. A mixture of tert-butyl 4-(2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (Intermediate 5B) and regioisomer tert-butyl 4-(3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (95 mg, 0.21 mmol) was dissolved in MeOH (5 mL) and transferred to a Parr bottle. The mixture was purged with nitrogen. Pearlman’s Catalyst (25 mg, 0.036 mmol) was added and the bottle was pressurized with hydrogen gas (50 psi) and shaken for 22 h. The reaction mixture was filtered through a pad of Celite and the filtrate was concentrated. The resulting residue was dissolved in a small amount of DCM and charged to a silica gel column, which was eluted over a 10 min gradient with 1%-5% MeOH/DCM to afford a mixture of tert-butyl 4-(2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (Intermediate 5C) and the regioisomer tert-butyl 4-(3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1 (2H)-carboxylate (82 mg, 80%), m/z (452, M+H). The mixture of isomers (tert-butyl 4-(2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)piperidine-1-carboxylate (Intermediate 5C) and tert-butyl 4-(3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)piperidine-1-carboxylate (80 mg, 0.18 mmol) were suspended in 4 N HCl in dioxane (4 mL, 16.00 mmol), stirred for 30 min, and concentrated to dryness. The resulting residue was suspended in diethyl ether (1 mL) and the solids were filtered and dried to give a mixture of 2-(3,4-dimethoxyphenyl)-3-methyl-5-(piperidin-4-yl)-1H-pyrrolo[3,2-b]pyridine (Intermediate 5D) and 3-(3,4-dimethoxyphenyl)-2-methyl-5-(piperidin-4-yl)-1H-pyrrolo[3,2-b]pyridine as bis HCl salts (50 mg, 65%), m/z (352, M+H).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 915006-52-9, 6-Bromo-2-iodopyridin-3-amine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; Dyckman, Alaric J.; Dodd, Dharmpal S.; Mussari, Christopher P.; Sherwood, Trevor C.; Whiteley, Brian K.; Gilmore, John L.; Kumar, Sreekantha Ratna; Pasunoori, Laxman; Srinivas, Pitani Veera Venkata; Duraisamy, Srinivasan Kunchithapatham; Hegde, Subramanya; Anumula, Rushith Kumar; US2019/185469; (2019); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 6-Bromo-2-iodopyridin-3-amine

According to the analysis of related databases, 915006-52-9, the application of this compound in the production field has become more and more popular.

Electric Literature of 915006-52-9, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 915006-52-9, name is 6-Bromo-2-iodopyridin-3-amine, molecular formula is C5H4BrIN2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

To a mixture of 6-bromo-2-iodopyridin-3-amine (100 mg, 0.34 mmol), 1,2-dimethoxy-4-(prop-1-yn-1-yl)benzene (74 mg, 0.42 mmol), lithium chloride (18 mg, 0.42 mmol), sodium carbonate (180 mg, 1.68 mmol) and Pd(dppf)Cl2 (12.5 mg, 0.017 mmol) in a screw cap vial was added DMF (2 mL). The vial was fitted with a Teflon-lined septum cap. The system was evacuated under vacuum (via a needle from a nitrogen/vacuum manifold line) and backfilled with nitrogen gas. The procedure was repeated three times. The needle was removed and the vial was heated at 100 C. for 16 h. LCMS analysis shows formation of two isomers, in approximately 3:1 ratio. 1H NMR analysis suggested the major product to be 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (5A-1). The reaction mixture was diluted with EtOAc (50 mL), poured into a separatory funnel and washed with 10% aqueous LiCl solution (2*10 mL) and saturated aqueous NaCl solution (10 mL), dried (Na2SO4), filtered and the filtrate was concentrated. The crude product was dissolved in a small amount of DCM and purified on a silica gel column chromatography with a 15 min gradient from 0%-100% DCM/EtOAc to afford 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (Intermediate 5A-1) that was contaminated with Intermediate 5A-2, 5-bromo-3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridine, m/z (303, M+1), 80 mg (67%).

According to the analysis of related databases, 915006-52-9, the application of this compound in the production field has become more and more popular.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; Dyckman, Alaric J.; Dodd, Dharmpal S.; Mussari, Christopher P.; Sherwood, Trevor C.; Whiteley, Brian K.; Gilmore, John L.; Kumar, Sreekantha Ratna; Pasunoori, Laxman; Srinivas, Pitani Veera Venkata; Duraisamy, Srinivasan Kunchithapatham; Hegde, Subramanya; Anumula, Rushith Kumar; US2019/185469; (2019); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Share a compound : 915006-52-9

The synthetic route of 915006-52-9 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 915006-52-9, name is 6-Bromo-2-iodopyridin-3-amine, the common compound, a new synthetic route is introduced below. Application In Synthesis of 6-Bromo-2-iodopyridin-3-amine

To a mixture of 6-bromo-2-iodopyridin-3-amine (100 mg, 0.34 mmol), 1,2-dimethoxy-4-(prop-1-yn-1-yl)benzene (74 mg, 0.42 mmol), lithium chloride (18 mg, 0.42 mmol), sodium carbonate (180 mg, 1.68 mmol) and Pd(dppf)Cl2 (12.5 mg, 0.017 mmol) in a screw cap vial was added DMF (2 mL). The vial was fitted with a Teflon-lined septum cap. The system was evacuated under vacuum (via a needle from a nitrogen/vacuum manifold line) and backfilled with nitrogen gas. The procedure was repeated three times. The needle was removed and the vial was heated at 100 C. for 16 h. LCMS analysis shows formation of two isomers, in approximately 3:1 ratio. 1H NMR analysis suggested the major product to be 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (5A-1). The reaction mixture was diluted with EtOAc (50 mL), poured into a separatory funnel and washed with 10% aqueous LiCl solution (2*10 mL) and saturated aqueous NaCl solution (10 mL), dried (Na2SO4), filtered and the filtrate was concentrated. The crude product was dissolved in a small amount of DCM and purified on a silica gel column chromatography with a 15 min gradient from 0%-100% DCM/EtOAc to afford 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (Intermediate 5A-1) that was contaminated with Intermediate 5A-2, 5-bromo-3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridine, m/z (303, M+1), 80 mg (67%). To a mixture containing 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (Intermediate 5A-1) and Intermediate 5A-2 (100 mg, 0.29 mmol), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate (111 mg, 0.36 mmol), and Pd(dppf)C12 (10.5 mg, 0.014 mmol) in a screw cap vial was added THF (2.5 mL) followed by 3M aqueous solution of tripotassium phosphate (0.10 mL, 0.3 mmol). The vial was fitted with a Teflon lined septum cap. The system was evacuated under vacuum (via a needle from a nitrogen/vacuum manifold line) and backfilled with nitrogen gas. The procedure was repeated three times. The needle was removed and the vial was heated at 75 C. for 3 h. The reaction mixture was cooled to room temperature and treated with saturated aqueous NaCl solution (5 mL) and extracted with ethyl acetate (3*10 mL). The extracts were combined, dried (Na2SO4), filtered and concentrated. The crude product was dissolved in a small amount of DCM and purified on silica gel column chromatography eluting with a 10 min gradient from 5%-100% DCM/EtOAc. No separation was observed. A mixture of tert-butyl 4-(2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (Intermediate 5B) and the regioisomer tert-butyl 4-(3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1 (2H)-carboxylate was isolated (100 mg, 77% yield), m/z (550, M+1) and was used as such in subsequent step. A mixture of tert-butyl 4-(2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (Intermediate 5B) and regioisomer tert-butyl 4-(3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (95 mg, 0.21 mmol) was dissolved in MeOH (5 mL) and transferred to a Parr bottle. The mixture was purged with nitrogen. Pearlman’s Catalyst (25 mg, 0.036 mmol) was added and the bottle was pressurized with hydrogen gas (50 psi) and shaken for 22 h. The reaction mixture was filtered through a pad of Celite and the filtrate was concentrated. The resulting residue was dissolved in a small amount of DCM and charged to a silica gel column, which was eluted over a 10 min gradient with 1%-5% MeOH/DCM to afford a mixture of tert-butyl 4-(2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (Intermediate 5C) and the regioisomer tert-butyl 4-(3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1 (2H)-carboxylate (82 mg, 80%), m/z (452, M+H).

The synthetic route of 915006-52-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; Dyckman, Alaric J.; Dodd, Dharmpal S.; Mussari, Christopher P.; Sherwood, Trevor C.; Whiteley, Brian K.; Gilmore, John L.; Kumar, Sreekantha Ratna; Pasunoori, Laxman; Srinivas, Pitani Veera Venkata; Duraisamy, Srinivasan Kunchithapatham; Hegde, Subramanya; Anumula, Rushith Kumar; US2019/185469; (2019); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

A new synthetic route of 6-Bromo-2-iodopyridin-3-amine

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,915006-52-9, its application will become more common.

Electric Literature of 915006-52-9, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 915006-52-9 as follows.

To a mixture of 6-bromo-2-iodopyridin-3-amine (100 mg, 0.34 mmol), 1,2-dimethoxy-4-(prop-1-yn-1-yl)benzene (74 mg, 0.42 mmol), lithium chloride (18 mg, 0.42 mmol), sodium carbonate (180 mg, 1.68 mmol) and Pd(dppf)Cl2 (12.5 mg, 0.017 mmol) in a screw cap vial was added DMF (2 mL). The vial was fitted with a Teflon-lined septum cap. The system was evacuated under vacuum (via a needle from a nitrogen/vacuum manifold line) and backfilled with nitrogen gas. The procedure was repeated three times. The needle was removed and the vial was heated at 100 C. for 16 h. LCMS analysis shows formation of two isomers, in approximately 3:1 ratio. 1H NMR analysis suggested the major product to be 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (5A-1). The reaction mixture was diluted with EtOAc (50 mL), poured into a separatory funnel and washed with 10% aqueous LiCl solution (2*10 mL) and saturated aqueous NaCl solution (10 mL), dried (Na2SO4), filtered and the filtrate was concentrated. The crude product was dissolved in a small amount of DCM and purified on a silica gel column chromatography with a 15 min gradient from 0%-100% DCM/EtOAc to afford 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (Intermediate 5A-1) that was contaminated with Intermediate 5A-2, 5-bromo-3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridine, m/z (303, M+1), 80 mg (67%). To a mixture containing 5-bromo-2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridine (Intermediate 5A-1) and Intermediate 5A-2 (100 mg, 0.29 mmol), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)-carboxylate (111 mg, 0.36 mmol), and Pd(dppf)C12 (10.5 mg, 0.014 mmol) in a screw cap vial was added THF (2.5 mL) followed by 3M aqueous solution of tripotassium phosphate (0.10 mL, 0.3 mmol). The vial was fitted with a Teflon lined septum cap. The system was evacuated under vacuum (via a needle from a nitrogen/vacuum manifold line) and backfilled with nitrogen gas. The procedure was repeated three times. The needle was removed and the vial was heated at 75 C. for 3 h. The reaction mixture was cooled to room temperature and treated with saturated aqueous NaCl solution (5 mL) and extracted with ethyl acetate (3*10 mL). The extracts were combined, dried (Na2SO4), filtered and concentrated. The crude product was dissolved in a small amount of DCM and purified on silica gel column chromatography eluting with a 10 min gradient from 5%-100% DCM/EtOAc. No separation was observed. A mixture of tert-butyl 4-(2-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (Intermediate 5B) and the regioisomer tert-butyl 4-(3-(3,4-dimethoxyphenyl)-2-methyl-1H-pyrrolo[3,2-b]pyridin-5-yl)-5,6-dihydropyridine-1 (2H)-carboxylate was isolated (100 mg, 77% yield), m/z (550, M+1) and was used as such in subsequent step.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,915006-52-9, its application will become more common.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; Dyckman, Alaric J.; Dodd, Dharmpal S.; Mussari, Christopher P.; Sherwood, Trevor C.; Whiteley, Brian K.; Gilmore, John L.; Kumar, Sreekantha Ratna; Pasunoori, Laxman; Srinivas, Pitani Veera Venkata; Duraisamy, Srinivasan Kunchithapatham; Hegde, Subramanya; Anumula, Rushith Kumar; US2019/185469; (2019); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Introduction of a new synthetic route about 915006-52-9

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 915006-52-9, 6-Bromo-2-iodopyridin-3-amine, other downstream synthetic routes, hurry up and to see.

Application of 915006-52-9 ,Some common heterocyclic compound, 915006-52-9, molecular formula is C5H4BrIN2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

15.5 g 6-Bromo-2-iodo-pyridin-3-ylamine, 5.9 ml ethyl acrylate, 2.72 g triphenylphosphine and 28.75 ml triethylamine were dissolved in 90 ml acetonitrile. An argon stream was bubbled through the reaction mixture for 10 minutes then 2.33 g palladium(ll)acetate were added and the reaction mixture stirred at 800C. The reaction mixture was filtered hot troupgh a pad of celite then the solvent was removed in vacuo.The residue was purified by chromatography on silica gel to obtain 10.2 g (E)-3-(3-Amino-6-bromo-pyridin-2-yl)-acrylic acid ethyl ester. C10H11BrN2O2 (271.12), MS(ESI+): 273.0, 271.0 (M+H+), Rf(ethyl acetate : n- heptane = 1 :2) = 0.12.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 915006-52-9, 6-Bromo-2-iodopyridin-3-amine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; SANOFI-AVENTIS; WO2009/149820; (2009); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem