The author of 《Poly(amidoamine) Dendrimer-Coordinated Copper(II) Complexes as a Theranostic Nanoplatform for the Radiotherapy-Enhanced Magnetic Resonance Imaging and Chemotherapy of Tumors and Tumor Metastasis》 were Fan, Yu; Zhang, Jiulong; Shi, Menghan; Li, Dan; Lu, Chunhua; Cao, Xueyan; Peng, Chen; Mignani, Serge; Majoral, Jean-Pierre; Shi, Xiangyang. And the article was published in Nano Letters in 2019. Product Details of 98-98-6 The author mentioned the following in the article:
The development of a powerful nanoplatform to realize the simultaneous therapy and diagnosis of cancer using a similar element for theranostics remains a critical challenge. Herein, we report such a theranostic nanoplatform based on pyridine (Pyr)-functionalized generation 5 (G5) poly(amidoamine) dendrimers complexed with copper(II) (Cu(II)) for radiotherapy-enhanced T1-weighted magnetic resonance (MR) imaging and the synergistic radio-chemotherapy of both tumors and tumor metastasis. In this study, amine-terminated G5 dendrimers were covalently linked with 2-pyridinecarboxylic acid, acetylated to neutralize their remaining terminal amines, and complexed with Cu(II) through both the internal tertiary amines and the surface Pyr groups to form the G5.NHAc-Pyr/Cu(II) complexes. We show that the complexes are able to inhibit the proliferation of different cancer cell lines with half-maximal inhibitory concentrations ranging from 4 to 10μM and induce significant cancer cell apoptosis. Due to the presence of Cu(II), the G5.NHAc-Pyr/Cu(II) complexes display an r1 relaxivity of 0.7024 mM-1 s-1, enabling effective in vivo MR imaging of tumor xenografts and lung metastatic nodules. Further, under radiotherapy (RT) conditions, the tumor MR imaging sensitivity can be significantly enhanced, and the G5.NHAc-Pyr/Cu(II) complexes enable the enhanced chemotherapy of both a xenografted tumor model and a blood-vessel metastasis model. With the demonstrated theranostic potential of the dendrimer-Cu(II) nanocomplexes without addnl. agents or elements for RT-enhanced MR imaging and chemotherapy of tumor and tumor metastasis, this novel Cu(II)-based nanohybrids may hold great promise for the theranostics of different cancer types and metastases. After reading the article, we found that the author used Picolinic acid(cas: 98-98-6Product Details of 98-98-6)
Picolinic acid(cas: 98-98-6) is used as a chelate for alkaline earth metals. Used to prepare picolinato ligated transition metal complexes. In synthetic organic chemistry, has been used as a substrate in the Mitsunobu reaction and in the Hammick reaction.Product Details of 98-98-6