The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: Palladium(II) acetate, is researched, Molecular C4H6O4Pd, CAS is 3375-31-3, about The role of hydrogen bronzes in the hydrogenation of polyfunctional reagents: cinnamaldehyde, furfural and 5-hydroxymethylfurfural over Pd/HxWO3 and Pd/HxMoO3 catalysts, the main research direction is cinnamaldehyde hydroxymethyl furfural hydrogen bronze hydrogenation palladium catalyst.Computed Properties of C4H6O4Pd.
Differences in the activity of Pd/WO3 and Pd/MoO3 (Pd loading 0.4-4 weight%) catalysts in competitive hydrogenations of the C=C and C=O groups in polyfunctional reagents have been studied as a function of two effects: (1) the in situ formation of hydrogen bronzes, HxWO3 and HxMoO3, and (2) the electronic interaction between the supports and the metallic Pd. The cinnamaldehyde (CAL), furfural (FU) and 5-hydroxymethylfurfural (HMF) were hydrogenated under mild reaction conditions. The formation of hydrogen bronzes in Pd/WO3 and phys. mixture of Pd/WO3 with supporting WO3 oxide upon exposure to H2 was also studied using the gas flow-through microcalorimetry. In both Pd/MoO3 and Pd/WO3 catalysts, the electronic interactions contributed to the promotion of selectivity toward the C=O hydrogenation in CAL and FU, yet in Pd/MoO3 this effect was much more pronounced. On the other hand, apart from increasing the overall reaction rate, the formation of hydrogen bronzes remarkably enhances the C=C hydrogenation in CAL, as well as the decarbonylation of FU to furan and hydrogenolysis of C-OH in HMF to 5-methylfurfural. The bronze effects are significantly stronger in HxWO3, compared to HxMoO3, which may be related to higher H-species mobility and weaker H-bonding in the W-O-H (54 kJ/mol H2) than in the Mo-O-H (100 kJ/mol H2). This may also explain very high tendency of Pd/WO3 to furan ring hydrogenation in FU and HMF as well as almost selective (>98%) hydrogenation of furfuryl alc. to tetrahydrofurfuryl alc.
After consulting a lot of data, we found that this compound(3375-31-3)Computed Properties of C4H6O4Pd can be used in many types of reactions. And in most cases, this compound has more advantages.