Fang, Zhenlan et al. published their research in CrystEngComm in 2012 | CAS: 15420-02-7

2,5-Di(pyridin-4-yl)-1,3,4-oxadiazole (cas: 15420-02-7) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ·mol−1 in pyridine vs. 150 kJ·mol−1 in benzene). Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. COA of Formula: C12H8N4O

Solvothermal synthesis of two new coordination polymers: in situ heterocycle conversion and N-alkylation, network topologies and luminescence properties was written by Fang, Zhenlan;Yang, Wenbin;He, Jiangang;Ding, Kaining;Wu, Xiaoyuan;Zhang, Qisheng;Yu, Rongmin;Lu, Canzhong. And the article was included in CrystEngComm in 2012.COA of Formula: C12H8N4O This article mentions the following:

Two new copper complexes [CuI4(L2)I5]n (1, L2 = 3,5-bis(1-ethylpyridinium-4-yl)-1,2,4-triazol-4-ide) and [CuI6(L3)3Br3]n (2, L3 = 3,5-bis(4-pyridyl)-1,2,4-triazolate) were obtained from the solvothermal reactions of different copper halides with 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (L1) in the presence of aqueous ammonia. The x-ray diffraction, IR spectrum and elemental analyses of 1 and 2 clearly show that the 1,3,4-oxadiazole ligand L1 has transformed into the triazolate ligands L2 and L3. Most fascinatingly, 1 represents the first example of an integrated reaction system involving heterocyclic conversion from oxadiazole to triazolate, N-alkylation, and further self-assembly of the in situ generated ligand L2 with metal cations to form a coordination polymer in one solvothermal spot. The possible formation mechanism of 1 is proposed, and in addition, the interesting topologies and luminescence properties of 2 were studied based on the results of the DFT calculations In the experiment, the researchers used many compounds, for example, 2,5-Di(pyridin-4-yl)-1,3,4-oxadiazole (cas: 15420-02-7COA of Formula: C12H8N4O).

2,5-Di(pyridin-4-yl)-1,3,4-oxadiazole (cas: 15420-02-7) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ·mol−1 in pyridine vs. 150 kJ·mol−1 in benzene). Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. COA of Formula: C12H8N4O

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem