Finck, Lucie et al. published their research in Chemistry – A European Journal in 2021 | CAS: 700-16-3

2,3,4,5,6-Perfluoropyridine (cas: 700-16-3) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Pyridine groups exist in countless molecules, and their applications include catalysis, drug design, molecular recognition, and natural product synthesis.Application In Synthesis of 2,3,4,5,6-Perfluoropyridine

Transition-Metal-Free Coupling of Polyfluorinated Arenes and Functionalized, Masked Aryl Nucleophiles was written by Finck, Lucie;Oestreich, Martin. And the article was included in Chemistry – A European Journal in 2021.Application In Synthesis of 2,3,4,5,6-Perfluoropyridine The following contents are mentioned in the article:

A chemoselective C(sp2)-C(sp2) coupling of sufficiently electron-deficient fluorinated arenes and functionalized N-aryl-N’-silyldiazenes as masked aryl nucleophiles is reported. The fluoride-promoted transformation involves the in situ generation of the aryl nucleophile decorated with various sensitive functional groups followed by a stepwise nucleophilic aromatic substitution (SNAr). These reactions typically proceed at room temperature within minutes. This catalytic process allows for the functionalization of both coupling partners, furnishing highly fluorinated biaryls in good yields. Thus, e.g., diazene I + hexafluorobenzene 鈫?II (92%, 79% isolated) in presence of CsF in DMF. This study involved multiple reactions and reactants, such as 2,3,4,5,6-Perfluoropyridine (cas: 700-16-3Application In Synthesis of 2,3,4,5,6-Perfluoropyridine).

2,3,4,5,6-Perfluoropyridine (cas: 700-16-3) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Pyridine groups exist in countless molecules, and their applications include catalysis, drug design, molecular recognition, and natural product synthesis.Application In Synthesis of 2,3,4,5,6-Perfluoropyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem