(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Computed Properties of C8H10NO6P
Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis was written by Fujishiro, Takashi;Nakamura, Ryosuke;Kunichika, Kouhei;Takahashi, Yasuhiro. And the article was included in Biophysics and Physicobiology in 2022.Computed Properties of C8H10NO6P The following contents are mentioned in the article:
A review. Cysteine desulfurases are pyridoxal-5”-phosphate (PLP)-dependent enzymes that mobilize sulfur derived from the L-cysteine substrate to the partner sulfur acceptor proteins. Three cysteine desulfurases, IscS, NifS, and SufS, have been identified in ISC, NIF, and SUF/SUF-like systems for iron-sulfur (Fe-S) cluster biosynthesis, resp. These cysteine desulfurases have been investigated over decades, providing insights into shared/distinct catalytic processes based on two types of enzymes (type I: IscS and NifS, type II: SufS). This review summarizes the insights into the structural/functional varieties of bacterial and eukaryotic cysteine desulfurases involved in Fe-S cluster biosynthetic systems. In addition, an inactive cysteine desulfurase IscS paralog, which contains pyridoxamine-5”-phosphate (PMP), instead of PLP, is also described to account for its hypothetical function in Fe-S cluster biosynthesis involving this paralog. The structural basis for cysteine desulfurase functions will be a stepping stone towards understanding the diversity and evolution of Fe-S cluster biosynthesis. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Computed Properties of C8H10NO6P).
(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Computed Properties of C8H10NO6P
Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem