In 2022,Gottwald, Dominique; Geidel, Christian; Rueffer, Tobias; Schaarschmidt, Dieter; Lang, Heinrich published an article in Journal of Organometallic Chemistry. The title of the article was 《Heterodi-, -tri- and -tetrametallic Transition-Metal-Complexes》.Safety of 4-Ethynylpyridine The author mentioned the following in the article:
Complexes trans-[Pt(CCMc)2(PBu3)2] (Mc = Fc = Fe(n5-C5H4)(n5-C5H5) (3), [1,2] Mc = Rc = Ru(n5-C5H4)(n5-C5H5) (4)) were synthesized by treatment of cis-[PtCl2(PBu3)2] with McCCH (Mc = Fc (1), Rc (2)). The synthesis of trans-[Pt(PR3)2(CCFc)(CCR’)] (R = Bu: R’ = H (7a), R’ = PPh2 (7b), R’ = Rc (7c); R = Ph: R’ = 4-C5H4N (8a), R’ = C6H4-4-CN (8b), R’ = 2,2′-bipyridin-5-yl (8c), R’ = C6H4-4-CCH (8d)) was realized by the reaction of trans-[PtCl(PR3)2(CCFc)] (R = Bu (5), R = Ph (6)) with alkynes HCCR’. Treatment of 8a with [RuCl2(cymene)]2 (cymene = η6-1-Me-4-iPr-C6H4) or [Rh(η5-C5Me5)Cl2]2 and of 8c with [Mo(CO)4(2,5-norbornadiene)] or [Mn(CO)5Br] led to heterotrimetallic trans-[Pt(PPh3)2(CCFc)(CCR’-{M})] (R’ = 4-C5H4N: {M} = Ru(η6-cymene)Cl2 (10a), = Rh(η5-C5Me5)Cl2 (10b); R’ = 2,2′-bipyridin-5-yl: {M} = Mo(CO)4 (11a), = Mn(CO)3Br (11b)). When 8b,c were reacted with [{[Ti](μ-σ,π-CCSiMe3)2}Cu(MeCN)][PF6] ([Ti] = Ti(η5-C5H4SiMe3)2) then heterotetrametallic trans-[Pt(PPh3)2(CCFc)(CCR’-{M})][PF6] {M} = [Ti](μ-σ,π-CCSiMe3)2Cu: R’ = 2,2′-bipyridin-5-yl (11c), R’ = -C6H4-4-CN (11d) were produced. Compounds 3, 4 and 7c were characterized by single-crystal X-ray diffraction studies establishing the trans arrangement at Pt. The electrochem. behavior of all compounds was investigated by CV showing reversible redox events for Fc in 3, 7a,c, 8a-d, 10a,b, 11b,c in the range of E°1′ = -120 – -85 mV, while M feature irreversible redox processes between 745 and 1230 mV. In addition to this study using 4-Ethynylpyridine, there are many other studies that have used 4-Ethynylpyridine(cas: 2510-22-7Safety of 4-Ethynylpyridine) was used in this study.
4-Ethynylpyridine(cas: 2510-22-7) belongs to pyridine. Pyridine derivatives lend themselves to many roles in the spirited field of supramolecular chemistry – whether as the ligand backbone of metal-organic polymers or presiding over the key electronic stations of nanodevices. In biochemistry, pyridine-containing cofactors are necessary nutrients on which our lives depend. Safety of 4-Ethynylpyridine