Monitoring protein conformational changes using fluorescent nanoantennas was written by Harroun, Scott G.;Lauzon, Dominic;Ebert, Maximilian C. C. J. C.;Desrosiers, Arnaud;Wang, Xiaomeng;Vallee-Belisle, Alexis. And the article was included in Nature Methods in 2022.COA of Formula: C8H10NO6P The following contents are mentioned in the article:
Understanding the relationship between protein structural dynamics and function is crucial for both basic research and biotechnol. However, methods for studying the fast dynamics of structural changes are limited. Here, we introduce fluorescent nanoantennas as a spectroscopic technique to sense and report protein conformational changes through noncovalent dye-protein interactions. Using experiments and mol. simulations, we detect and characterize five distinct conformational states of intestinal alk. phosphatase, including the transient enzyme-substrate complex. We also explored the universality of the nanoantenna strategy with another model protein, Protein G and its interaction with antibodies, and demonstrated a rapid screening strategy to identify efficient nanoantennas. These versatile nanoantennas can be used with diverse dyes to monitor small and large conformational changes, suggesting that they could be used to characterize diverse protein movements or in high-throughput screening applications. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7COA of Formula: C8H10NO6P).
(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. One of the examples of pyridines is the well-known alkaloid lithoprimidine, which is an A3 adenosine receptor antagonist and N,N-dimethylaminopyridine (DMAP) analog, commonly used in organic synthesis.COA of Formula: C8H10NO6P