Hattori, Shingo’s team published research in Journal of Physical Chemistry B in 2021 | CAS: 94928-86-6

fac-Tris(2-phenylpyridine)iridium(cas: 94928-86-6) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. COA of Formula: C33H24IrN3

Hattori, Shingo; Hirata, Shuntaro; Shinozaki, Kazuteru published their research in Journal of Physical Chemistry B in 2021. The article was titled 《Emission Intensity Enhancement for Iridium(III) Complex in Dimethyl Sulfoxide under Photoirradiation》.COA of Formula: C33H24IrN3 The article contains the following contents:

We found emission intensity enhancement for fac-Ir(ppy)3 (ppy = 2-(2′-phenyl)pyridine) in aerated DMSO during photoirradiation for the first time. This phenomenon was concluded to be responsible for the consumption of 3O2 dissolved in DMSO through di-Me sulfone production by photosensitized reaction using fac-Ir(ppy)3. A 3O2 adduct of DMSO mol. was detected by UV absorption measurement and theor. calculation We proposed a mechanism for the emission enhancement reaction including 1,3O2 mols. and 1,3O2-DMSO adducts and validated it through a simulation of emission intensity change using an ordinary differential equation solver. The experimental part of the paper was very detailed, including the reaction process of fac-Tris(2-phenylpyridine)iridium(cas: 94928-86-6COA of Formula: C33H24IrN3)

fac-Tris(2-phenylpyridine)iridium(cas: 94928-86-6) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. COA of Formula: C33H24IrN3

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem