Synthetic Route of 145100-50-1 ,Some common heterocyclic compound, 145100-50-1, molecular formula is C7H4F6N2O4S2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.
Step C: Preparation of (1S)-1-(4-fluorophenyl)-3-[(3R,4S)-1-(4-{3-[methyl(methylsulfonyl)-amino]propyl}phenyl)-2-oxo-4-(4-{[(trifluoromethyl)sulfonyl]oxy}phenyl)azetidin-3-yl]propyl acetate (i-10b wherein R10=CH3) Guanidine (13 mg, 0.13 mmol) was added to a mixture of the intermediate from Step B (82 mg, 0.13 mmol) and triethylamine (18 muL, 0.13 mmol) in methanol (2 mL). After 3 h, the reaction mixture was quenched with saturated aqueous ammonium chloride and extracted three times with EtOAc. The combined organic extracts were washed with water, brine, dried (Na2SO4) and concentrated in vacuo to afford a clear oil which was dissolved in CH2Cl2 (1.5 mL). Triethylamine (24 mL, 0.17 mmol), DMAP (2.0 mg, 0.016 mmol) and (bis(trifluoromethylsulfonyl)amino)pyridine (77 mg, 0.13 mmol) were added successively to the above solution. After 3 h, the reaction was quenched with 0.5N aq. HCl and extracted three times with EtOAc. The combined organic extracts were washed with water, brine, dried (Na2SO4) and concentrated in vacuo. Purification of the crude residue by flash chromatography on silica gel (gradient elution; 35%-40% EtOAc/hexanes as eluent) afforded the title compound. m/z (ES) 655 (M-OAc)+. 1H-NMR (500 MHz, CDCl3) delta: 7.43 (d, J=8.6 Hz, 1H), 7.32-7.28 (m, 2H), 7.15 (d, J=6.4 Hz, 1H), 7.10 (d, J=8.4 Hz, 1H), 7.04 (t, J=6.5 Hz, 1H), 5.72 (t, 6.6 Hz, 1H), 4.66 (d, J=2.3 Hz, 1H), 3.14 (dt, J=2.6, 6.6 Hz, 2H), 3.08 (dt, J=2.5, 8.2 Hz, 1H), 2.84 (s, 3H), 2.79 (s, 3H), 2.61 (t, 7.7 Hz, 2H), 2.08 (overlapped s, 3H), 2.09-2.04 (m, 2H), 1.93-1.84 (m, 4H).
These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,145100-50-1, its application will become more common.
Reference:
Patent; DeVita, Robert J.; Morriello, Gregori J.; Lin, Peter; US2007/78098; (2007); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem