Computed Properties of C5H3Br2NIn 2021 ,《Reductive Dimerization of Macrocycles Activated by BBr3》 appeared in Organic Letters. The author of the article were Kijewska, Monika; Siczek, Milosz; Pawlicki, Milosz. The article conveys some information:
Dimeric dipyridyl-carbazolyl boron dicationic complex I was prepared by BBr3-promoted dimerization of dipyridyl carbazole carbonyl-bridged macrocycle. A macrocyclic motif composed of carbazole and pyridine subunits linked by a carbonyl bridge (C:O) forms a skeleton with a peripheral reactivity that leads to a pinacol-like coupling activated by BBr3, eventually entrapping a substantially elongated C-C bond. Slightly modified conditions lead to the efficient transformation of the C=O unit to a CH2 linker that, after exposure to air, gives a dimeric mol. with multiple bonds between two macrocyclic units, as documented in spectroscopy and x-ray anal. The experimental process involved the reaction of 2,6-Dibromopyridine(cas: 626-05-1Computed Properties of C5H3Br2N)
2,6-Dibromopyridine(cas: 626-05-1) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Computed Properties of C5H3Br2N