Scandium(III) Triflate Catalyzed Direct Synthesis of N-Unprotected Ketimines was written by Kondo, Yuta;Kadota, Tetsuya;Hirazawa, Yoshinobu;Morisaki, Kazuhiro;Morimoto, Hiroyuki;Ohshima, Takashi. And the article was included in Organic Letters in 2020.Product Details of 91-02-1 This article mentions the following:
N-Unprotected ketimines are useful substrates and intermediates for synthesizing valuable nitrogen-containing compounds, but their potential applicability is limited by the available synthetic methods. To address this issue, we report a scandium(III) triflate catalyzed direct synthesis of N-unprotected ketimines. Using com. available reagents and Lewis acid catalysts, ketones were directly transformed into the corresponding N-unprotected ketimines in high yields with broad functional group tolerance, even in multigram scales. The reactions were readily applicable for one-pot synthesis of important compounds such as a glycine Schiff base without isolation of N-unprotected ketimine intermediates. Preliminary mechanistic studies to clarify the reaction mechanism are also described. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Product Details of 91-02-1).
Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. The ring atoms in the pyridine molecule are sp2-hybridized. The nitrogen is involved in the π-bonding aromatic system using its unhybridized p orbital. The lone pair is in an sp2 orbital, projecting outward from the ring in the same plane as the σ bonds. Pyridine, its benzo and pyridine-based compounds play diverse roles in organic chemistry. Pyridine-based materials are valued for their optical and physical properties as well as their medical potential. Product Details of 91-02-1