Mills, L. Reginald team published research in Journal of the American Chemical Society in 2020 | 766-11-0

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Category: pyridine-derivatives

Pyridine is colorless, but older or impure samples can appear yellow. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. Category: pyridine-derivatives.

Mills, L. Reginald;Monteith, John J.;dos Passos Gomes, Gabriel;Aspuru-Guzik, Alan;Rousseaux, Sophie A. L. research published 《 The Cyclopropane Ring as a Reporter of Radical Leaving-Group Reactivity for Ni-Catalyzed C(sp3)-O Arylation》, the research content is summarized as follows. The ability to understand and predict reactivity is essential for the development of new reactions. In the context of Ni-catalyzed C(sp3)-O functionalization, we have developed a unique strategy employing activated cyclopropanols to aid the design and optimization of a redox-active leaving group for C(sp3)-O arylation. In this chem., the cyclopropane ring acts as a reporter of leaving-group reactivity, since the ring-opened product is obtained under polar (2e) conditions, and the ring-closed product is obtained under radical (1e) conditions. Mechanistic studies demonstrate that the optimal leaving group is redox-active and are consistent with a Ni(I)/Ni(III) catalytic cycle. The optimized reaction conditions are also used to synthesize a number of arylcyclopropanes, which are valuable pharmaceutical motifs.

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Category: pyridine-derivatives

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem