Motz, Rachel N. et al. published their research in Inorganic Chemistry in 2021 | CAS: 91-02-1

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. The ring atoms in the pyridine molecule are sp2-hybridized. The nitrogen is involved in the 闂?bonding aromatic system using its unhybridized p orbital. The lone pair is in an sp2 orbital, projecting outward from the ring in the same plane as the 闂?bonds. One of the examples of pyridines is the well-known alkaloid lithoprimidine, which is an A3 adenosine receptor antagonist and N,N-dimethylaminopyridine (DMAP) analog, commonly used in organic synthesis.Quality Control of Phenyl(pyridin-2-yl)methanone

High-Throughput Screening of Earth-Abundant Water Reduction Catalysts toward Photocatalytic Hydrogen Evolution was written by Motz, Rachel N.;Lopato, Eric M.;Connell, Timothy U.;Bernhard, Stefan. And the article was included in Inorganic Chemistry in 2021.Quality Control of Phenyl(pyridin-2-yl)methanone This article mentions the following:

Cobalt(II) glyoxime and heterocycle complexes [Co(LL)2pyCl]n+ (LL – 婵?dioxime, 8-quinolinols, 婵?diketone dihydrazides, bipyridines, phenanthrolines, pyridyltetrazoles, etc.; n = 0-2) were generated in situ and screened for cocatalytic activity in Eosin Y-catalyzed photoreduction of water in the presence of triethylamine as sacrificial reductant. Noble-metal photosensitizers and water reduction co-catalysts (WRCs) still present the highest activity in homogeneous photocatalytic hydrogen production The search for earth-abundant alternatives is usually limited by the time required to screen new catalyst combinations; however, here, we utilize newly designed and developed high-throughput photoreactors for the parallel synthesis of novel WRCs and colorimetric screening of hydrogen evolution. This unique approach allowed rapid optimization of photocatalytic water reduction using the organic photosensitizer Eosin Y and the archetypal cobaloxime WRC [Co(GL1)2pyCl], where GL1 is dimethylglyoxime and py is pyridine. Subsequent combinatorial synthesis generated 646 unique cobalt complexes of the type [Co(LL)2pyCl], where LL is a bidentate ligand, that identified promising new WRC candidates for hydrogen production D. functional theory (DFT) calculations performed on such cobaloxime derivative complexes demonstrated that reactivity depends on hydride affinity. Alkyl-substituted glyoximes were necessary for hydrogen production and showed increased activity when paired with ligands containing strong hydrogen-bond donors. Using a newly developed method of H2 detection using colorimetric tape, we screened a massive parallel library of cobaloxime water reduction catalysts. This noble-metal-free system of photocatalytic water reduction was optimized using Eosin Y as a photosensitizer. Screening identified a series of intriguing heteroleptic species with high activity, while DFT calculations of potential reaction intermediates correlated the activity of homoleptic cobaloximes to their hydride binding affinity. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Quality Control of Phenyl(pyridin-2-yl)methanone).

Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. The ring atoms in the pyridine molecule are sp2-hybridized. The nitrogen is involved in the 闂?bonding aromatic system using its unhybridized p orbital. The lone pair is in an sp2 orbital, projecting outward from the ring in the same plane as the 闂?bonds. One of the examples of pyridines is the well-known alkaloid lithoprimidine, which is an A3 adenosine receptor antagonist and N,N-dimethylaminopyridine (DMAP) analog, commonly used in organic synthesis.Quality Control of Phenyl(pyridin-2-yl)methanone

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem