Reference of 2-Pyridinylboronic acidIn 2020 ,《Green-Synthesized Nickel Nanoparticles on Reduced Graphene Oxide as an Active and Selective Catalyst for Suzuki and Glaser-Hay Coupling Reactions》 appeared in Applied Organometallic Chemistry. The author of the article were Murugan, Karthik; Nainamalai, Devarajan; Kanagaraj, Pavithara; Nagappan, Saravana Ganesan; Palaniswamy, Suresh. The article conveys some information:
The present work disclosed the potential catalytic application of the as-prepared RGO-Ni nanocomposite in Csp2-Csp2 Suzuki type homocoupling and Csp-Csp Glaser-Hay coupling reactions. A mild and benign methodol. to synthesize biaryls Ar-Ar [Ar = Ph, 3-MeOC6H4, 2-pyridyl, etc.] and 1,3-diynes R-CC-CC-R [R = t-Bu, 3-FC6H4, 4-EtC6H4, etc.] was demonstrated using the nickel nanoparticles supported on reduced graphene oxide (RGO-Ni) as a heterogeneous catalyst which was prepared using green reagents. A series of substituted biaryls Ar-Ar and 1,3-diynes R-CC-CC-R was synthesized in good to excellent yields via reduced graphene oxide supported nickel nanoparticles catalyzed Suzuki coupling of arylboronic acids and Glaser-Hay coupling of terminal alkynes resp. using 1,4-dioxane as a benign solvent. The present ligand-free catalytic system proceeded smoothly under mild conditions, avoided noble and stoichiometric metal reagents and tolerated sensitive functional groups such as nitrogen and sulfur containing heteroaryl boronic acids. Hot filtration test unambiguously proved the true heterogeneity of the catalyst and which supported for the further reusability of the catalyst for several times without any change in the activity. The easy preparation and simple magnetic separation, stability and reusability revealed that as-prepared RGO-Ni as a versatile catalyst for the synthesis of polyaromatic compounds both in academia and industries. The results came from multiple reactions, including the reaction of 2-Pyridinylboronic acid(cas: 197958-29-5Reference of 2-Pyridinylboronic acid)
2-Pyridinylboronic acid(cas: 197958-29-5) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Reference of 2-Pyridinylboronic acid