Ormerod, Kiel G. published the artcileRegulation of excitation-contraction coupling at the Drosophila neuromuscular junction, Safety of 3-Ethyl 5-methyl 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, the main research area is Drosophila neuromuscular junction excitation contraction coupling; drosophila; neuromuscular junction; synapse.
The Drosophila neuromuscular system is widely used to characterize synaptic development and function. However, little is known about how specific synaptic alterations effect neuromuscular transduction and muscle contractility, which ultimately dictate behavioral output. Here we develop and use a force transducer system to characterize excitation-contraction coupling at Drosophila larval neuromuscular junctions (NMJs), examining how specific neuronal and muscle manipulations disrupt muscle contractility. Muscle contraction force increased with motoneuron stimulation frequency and duration, showing considerable plasticity between 5 and 40 Hz and saturating above 50 Hz. Endogenous recordings of fictive contractions revealed average motoneuron burst frequencies of 20-30 Hz, consistent with the system operating within this plastic range of contractility. Temperature was also a key factor in muscle contractility, as force was enhanced at lower temperatures and dramatically reduced with increasing temperatures Pharmacol. and genetic manipulations of critical components of Ca2+ regulation in both pre- and postsynaptic compartments affected the strength and time course of muscle contractions. A screen for modulators of muscle contractility led to identification and characterization of the mol. and cellular pathway by which the FMRFa peptide, TPAEDFMRFa, increases muscle performance. These findings indicate Drosophila NMJs provide a robust system to correlate synaptic dysfunction, regulation and modulation to alterations in excitation-contraction coupling. Key points : Larval muscle contraction force increases with stimulation frequency and duration, revealing substantial plasticity between 5 and 40 Hz. Fictive contraction recordings demonstrate endogenous motoneuron burst frequencies consistent with the neuromuscular system operating within the range of greatest plasticity. Genetic and pharmacol. manipulations of critical components of pre- and postsynaptic Ca2+ regulation significantly affect the strength and time course of muscle contractions. A screen for modulators of the excitation-contraction machinery identified a FMRFa peptide, TPAEDFMRFa and its associated signalling pathway, that dramatically increases muscle performance. Drosophila serves as an excellent model for dissecting components of the excitation-contraction coupling machinery.
Journal of Physiology (Oxford, United Kingdom) published new progress about Actins Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 72509-76-3 belongs to class pyridine-derivatives, name is 3-Ethyl 5-methyl 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C18H19Cl2NO4, Safety of 3-Ethyl 5-methyl 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate.