In 2018,Nature Chemistry included an article by Park, Hojoon; Verma, Pritha; Hong, Kai; Yu, Jin-Quan. Computed Properties of C6H4BrNO. The article was titled 《Controlling Pd(IV) reductive elimination pathways enables Pd(II)-catalysed enantioselective C(sp3)-H fluorination》. The information in the text is summarized as follows:
The development of a Pd(II)-catalyzed enantioselective fluorination of C(sp3)-H bonds would offer a new approach to making chiral organofluorines. However, such a strategy is particularly challenging because of the difficulty in differentiating prochiral C(sp3)-H bonds through Pd(II)-insertion, as well as the sluggish reductive elimination involving Pd-F bonds. Here, authors report the development of a Pd(II)-catalyzed enantioselective C(sp3)-H fluorination using a chiral transient directing group strategy. In this work, a bulky, amino amide transient directing group was developed to control the stereochem. of the C-H insertion step and selectively promote the C(sp3)-F reductive elimination pathway from the Pd(IV)-F intermediate. Stereochem. anal. revealed that while the desired C(sp3)-F formation proceeds via an inner-sphere pathway with retention of configuration, the undesired C(sp3)-O formation occurs through an SN2-type mechanism. Elucidation of the dual mechanism allows us to rationalize the profound ligand effect on controlling reductive elimination selectivity from high-valent Pd species. In the part of experimental materials, we found many familiar compounds, such as 2-Bromonicotinaldehyde(cas: 128071-75-0Computed Properties of C6H4BrNO)
2-Bromonicotinaldehyde(cas: 128071-75-0) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.Computed Properties of C6H4BrNO