Strategic Approach on N-Oxides in Gold Catalysis – A Case Study was written by Schiessl, Jasmin;Stein, Philipp M.;Stirn, Judith;Emler, Kirsten;Rudolph, Matthias;Rominger, Frank;Hashmi, A. Stephen K.. And the article was included in Advanced Synthesis & Catalysis in 2019.Application In Synthesis of 2,3,4,5,6-Perfluoropyridine The following contents are mentioned in the article:
An extensive kinetic study of selected key reactions of (oxidative) gold catalysis concentrates on the decrease of the catalytic activity due to inhibition of the gold(I) catalyst caused by pyridine derivatives that were obtained as byproducts if N-oxides are applied as oxygen donors. The choice of the examined pyridine derivatives and their corresponding N-oxides has been made regardless of their com. availability; particular attention has been paid to the practical benefit which up to now has been neglected in most of the reaction screenings. The test reactions were monitored by GC and 1H NMR spectroscopy. The received reaction constants provide information concerning a correlation between the electronic structure of the heterocycle and the catalytic activity. Based on the collected kinetic data, it was possible to develop a basic set of three N-oxides which have to be taken into account in further oxidative gold(I)-catalyzed reactions. This study involved multiple reactions and reactants, such as 2,3,4,5,6-Perfluoropyridine (cas: 700-16-3Application In Synthesis of 2,3,4,5,6-Perfluoropyridine).
2,3,4,5,6-Perfluoropyridine (cas: 700-16-3) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ路mol鈭? in pyridine vs. 150 kJ路mol鈭? in benzene). Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Application In Synthesis of 2,3,4,5,6-Perfluoropyridine