Semproni, Scott P. published the artcileFour-Coordinate Cobalt Pincer Complexes: Electronic Structure Studies and Ligand Modification by Homolytic and Heterolytic Pathways, Quality Control of 338800-13-8, the publication is Journal of the American Chemical Society (2014), 136(25), 9211-9224, database is CAplus and MEDLINE.
A family of cobalt chloride, Me, acetylide and hydride complexes bearing both intact and modified tert-Bu substituted bis(phosphino)pyridine pincer ligands has been synthesized and structurally characterized and their electronic structures evaluated. Treatment of the unmodified compounds with the stable nitroxyl radical, TEMPO (2,2,6,6-tetramethylpiperidin-1-yloxidanyl) resulted in immediate H- atom abstraction from the benzylic position of the chelate yielding the corresponding modified pincer complexes, (tBumPNP)CoX (X = H, CH3, Cl, CCPh). Thermolysis of the Me and hydride derivatives, (tBuPNP)CoCH3 and (tBuPNP)CoH, at 110° also resulted in pincer modification by H atom loss while the chloride and acetylide derivatives proved inert. The relative ordering of benzylic C-H bond strengths was corroborated by H atom exchange experiments between appropriate intact and modified pincer complexes. The electronic structures of the modified compounds, (tBumPNP)CoX were established by EPR spectroscopy and DFT computations and are best described as low spin Co(II) complexes with no evidence for ligand centered radicals. The electronic structures of the intact complexes, (tBuPNP)CoX were studied computationally and bond dissociation free energies of the benzylic C-H bonds were correlated to the identity of the X-type ligand on cobalt where pure σ donors such as hydride and Me produce the weakest C-H bonds. Comparison to a rhodium congener highlights the impact of the energetically accessible one-electron redox couple of the first row metal ion in generating weak C-H bonds in remote positions of the supporting pincer ligand.
Journal of the American Chemical Society published new progress about 338800-13-8. 338800-13-8 belongs to pyridine-derivatives, auxiliary class Bis-phosphine Ligands, name is 2,6-Bis((di-tert-butylphosphino)methyl)pyridine, and the molecular formula is 0, Quality Control of 338800-13-8.
Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem