Shahar, Or David published the artcileA high-throughput chemical screen with FDA approved drugs reveals that the antihypertensive drug Spironolactone impairs cancer cell survival by inhibiting homology directed repair, Application In Synthesis of 54856-23-4, the publication is Nucleic Acids Research (2014), 42(9), 5689-5701, database is CAplus and MEDLINE.
DNA double-strand breaks (DSBs) are the most severe type of DNA damage. DSBs are repaired by non-homologous end-joining or homol. directed repair (HDR). Identifying novel small mols. that affect HDR is of great importance both for research use and therapy. Mols. that elevate HDR may improve gene targeting, whereas inhibiting mols. can be used for chemotherapy, since some of the cancers are more sensitive to repair impairment. Here, the authors performed a high-throughput chem. screen for FDA approved drugs, which affect HDR in cancer cells. The authors found that HDR frequencies are increased by retinoic acid and Idoxuridine and reduced by the antihypertensive drug Spironolactone. The authors further revealed that Spironolactone impairs Rad51 foci formation, sensitizes cancer cells to DNA damaging agents, to Poly (ADP-ribose) polymerase (PARP) inhibitors and crosslinking agents and inhibits tumor growth in xenografts, in mice. This study suggests Spironolactone as a new candidate for chemotherapy.
Nucleic Acids Research published new progress about 54856-23-4. 54856-23-4 belongs to pyridine-derivatives, auxiliary class Pyridine,Salt,Amine,Inhibitor,Inhibitor, name is N-Methyl-2-(pyridin-2-yl)ethan-1-amine dimethanesulfonate, and the molecular formula is C18H12ClNO, Application In Synthesis of 54856-23-4.
Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem