Electric Literature of 116026-95-0 ,Some common heterocyclic compound, 116026-95-0, molecular formula is C11H14N2O3, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.
(4-Formyl-pyridin-3-yl)-carbamic acid tert-butyl ester (100 mg) was dissolved in a hydrochloric acid-methanol solution (2.0 ml), and the solution was stirred under reflux for 30 min. The solvent was removed by distillation under the reduced pressure. 1-Chloro-propan-2-one (42 mg) dissolved in a 5 N aqueous sodium hydroxide solution (0.5 ml) was added to the residue, and the mixture was allowed to stand in an airtightly stoppered state for two days. The reaction mixture was neutralized with 10% hydrochloric acid, and dichloromethane was then added thereto for extraction. The dichloromethane layer was washed with water and saturated brine and was dried over magnesium sulfate. The solvent was removed by distillation under the reduced pressure, and the residue was purified by column chromatography with a chloroform-acetone system to give 2-methyl-[1,7]naphthyridin-3-ol (22 mg, yield 31%). 2-Methyl-[1,7]naphthyridin-3-ol (22 mg), 4-chloro-6,7-dimethoxyquinoline (92 mg), and 4-dimethylaminopyridine (50 mg) were suspended in 1,2-dichlorobenzene (1.5 ml), and the suspension was stirred at 140C for 8.5 hr. The reaction mixture was cooled to room temperature, and water was added thereto. The mixture was extracted with chloroform, and the chloroform layer was washed with water and saturated brine and was dried over anhydrous magnesium sulfate. The solvent was removed by distillation under the reduced pressure, and the residue was purified by column chromatography with a chloroform-methanol system to give the title compound (25 mg, yield 53%). 1H-NMR (CDCl3, 400 MHz): delta 2.76 (s, 3H), 4.01 (s, 3H), 4.06 (s, 3H), 6.54 (d, J = 5.6 Hz, 1H), 7.44 (s, 1H), 7.49 (s, 1H), 7.52 (d, J = 6.0 Hz, 1H), 7.61 (s, 1H), 8.57 (m, 2H), 9.45 (s, 1H) Mass spectrometric value (ESI-MS, m/z): 348 (M+1)+ (4-Formyl-pyridin-3-yl)-carbamic acid tert-butyl ester (100 mg) was dissolved in a hydrochloric acid-methanol solution (2.0 ml), and the solution was stirred under reflux for 30 min. The solvent was removed by distillation under the reduced pressure. 2-Chloro-1-phenyl-ethanone (70 mg) dissolved in a 5 N aqueous sodium hydroxide solution (0.6 ml) was then added to the residue, and the mixture was allowed to stand in an airtightly stoppered state for two days. The reaction solution was neutralized with 10% hydrochloric acid, and dichloromethane was then added thereto for extraction. The dichloromethane layer was washed with water and saturated brine and was dried over magnesium sulfate. The solvent was removed by distillation under the reduced pressure, and the residue was purified by thin layer chromatography with a chloroform-acetone system to give 2-phenyl-[1,7]naphthyridin-3-ol (3 mg, yield 3%). 2-Phenyl-[1,7]naphthyridin-3-ol (3 mg), 4-chloro-6,7-dimethoxyquinoline (9 mg), and 4-dimethylaminopyridine (5 mg) were suspended in 1,2-dichlorobenzene (1.0 ml), and the suspension was stirred at 140C for 9 hr. The reaction mixture was cooled to room temperature, and water was added thereto. The mixture was extracted with chloroform, and the chloroform layer was washed with water and saturated brine and was dried over anhydrous magnesium sulfate. The solvent was removed by distillation under the reduced pressure, and the residue was purified by thin layer chromatography with a chloroform-methanol system to give the title compound (3 mg, yield 54%). 1H-NMR (CDCl3, 400 MHz): delta 4.00 (s, 3H), 4.07 (s, 3H), 6.59 (d, J = 5.6 Hz, 1H), 7.39 (m, 4H), 7.61 (m, 2H), 7.86 (s, 1H), 7.98 (m, 2H), 8.50 (d, J = 5.6 Hz, 1H), 8.64 (d, J = 5.6 Hz, 1H) 9.62 (s, 1H) Mass spectrometric value (ESI-MS, m/z): 432 (M+Na)+
These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,116026-95-0, its application will become more common.
Reference:
Patent; KIRIN BEER KABUSHIKI KAISHA; EP1724268; (2006); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem