Adding a certain compound to certain chemical reactions, such as: 6945-67-1, 2-Bromo-4-nitropyridine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Computed Properties of C5H3BrN2O2, blongs to pyridine-derivatives compound. Computed Properties of C5H3BrN2O2
Preparation 35 To a suspension of 2-bromo-4-nitropyridine (1.0 g) in ethanol (5 ml) was added a solution of sodium ethoxide in ethanol (20%, 2 ml), and the resultant mixture was stirred at 85 C. for 1.5 hours. After cooling, the mixture was diluted with dichloromethane and washed with water and brine. The separated organic layer was dried over sodium sulfate and evaporated under reduced pressure to give 2-bromo-4-ethoxypyridine (927 mg). 1H-NMR (CDCl3): delta1.43(3H,t,J=7.0 Hz), 4.08(2H,q,J=7.0 Hz), 6.76(1H,dd,J=5.8 Hz,2.3 Hz), 6.98(1H,d,J=2.3 Hz), 8.15(1H,d,J=5.8 Hz)
At the same time, in my other blogs, there are other synthetic methods of this type of compound,6945-67-1, 2-Bromo-4-nitropyridine, and friends who are interested can also refer to it.
Reference:
Patent; Fujisawa Pharmaceutical Co., Ltd.; US6521643; (2003); B1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem