Simple exploration of 2-Bromo-6-(bromomethyl)pyridine

The chemical industry reduces the impact on the environment during synthesis 83004-10-8, I believe this compound will play a more active role in future production and life.

Application of 83004-10-8, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.83004-10-8, name is 2-Bromo-6-(bromomethyl)pyridine, molecular formula is C6H5Br2N, molecular weight is 250.92, as common compound, the synthetic route is as follows.

To a solution of 0.855 ml of diisopropylamine in 15 ml of tetrahydrofuran was added 2.26 ml of a hexane solution containing 2.66 M n-butyllithium at O0C, followed by stirring the reaction mixture at 00C for 30 minutes. After cooling down to -78C, a solution of 1.54 g of 1- tert-butyl 4-ethyl piperidine-l,4-dicarboxylate in 5 ml of tetrahydrofuran was added to the reaction mixture, and the resultant mixture was stirred at -78C for 30 minutes. A solution of 1.00 g of 2-bromo-6-(bromomethyl)pyridine in 5 ml of tetrahydrofuran was added to the reaction mixture, followed by stirring the reaction mixture at -78C for 2 hours. To the reaction mixture was added saturated aqueous ammonium chloride solution, followed by extracting with ethyl acetate. The resulting ethyl acetate solution was dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated in vacuo. The resulting residue was purified by a silica gel column chromatography (eluent: hexane/ethyl acetate = 20/1 – 2/1) to give the title compound as a yellow oil.

The chemical industry reduces the impact on the environment during synthesis 83004-10-8, I believe this compound will play a more active role in future production and life.

Reference:
Patent; BANYU PHARMACEUTICAL CO., LTD.; WO2009/104802; (2009); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem