Some scientific research about 3510-66-5

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 3510-66-5, 2-Bromo-5-methylpyridine.

Electric Literature of 3510-66-5, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 3510-66-5, name is 2-Bromo-5-methylpyridine, molecular formula is C6H6BrN, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

172 g of thus obtained 2-bromo-5-methylpyridine was dissolved in 1.3 l of carbon tetrachloride, and the system was then heated. At the time refluxing begain (at 77 C.), chlorine gas was bubbled into the system with ultraviolet light irradiation. After a lapse of 5 hours, the completion of the reaction was confirmed by gas chromatography, and the system was cooled and air was bubbled into the system to expel the unreacted chlorine. The system was washed with water several times and dried over anhydrous sodium sulfate. Then, the carbon tetrachloride was distilled off, and the system was allowed to cool. The solid crystals thus-obtained were washed with n-hexane to obtain 152 g of 2-chloro-5-trichloromethylpyridine with a melting point of 51 to 54 C.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 3510-66-5, 2-Bromo-5-methylpyridine.

Reference:
Patent; Ishihara Sangyo Kaisha Ltd.; US4184041; (1980); A;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem